Мітки: власні значення

Застосування методу Крилова для знаходження власних векторів матриці

Метод Крилова, як і метод Данилевського, дає можливість достатньо просто знайти власні вектора матриці, якщо коефіцієнти характеристичного полінома та його корені визначені. Продемонструємо це і для простоти обмежимося випадком, коли характеристичний многочлен  матриці , має різні корені .

Отже, нехай – вектори, використовувані в методі Крилова для знаходження коефіцієнтів . Розкладаючи вектор за власними векторами матриці отримаємо:

де – деякі коефіцієнти.

Звідси, враховуючи, що , отримаємо:

Нехай,  – довільна система многочленів. Тоді, складаючи лінійну комбінацію векторів з коефіцієнтами з (3) та в силу співвідношень (1) і (2), знаходимо:

Читати далі

Обчислення власних векторів матриці методом Данилевського

Розглянутий в параграфі Обчислення власних значень матриці метод Данилевського дає можливість визначати не тільки всі власні значення матриці , а і всі її власні вектори, при умові, що відповідні їм власні значення являються відомими. Покажемо, яким чином це реалізується. Отже, нехай – власне значення матриці , а отже, і власне значення подібної їй матриці Фробеніуса .

Знайдемо власний вектор матриці , який відповідає власному значенню . Для цього, запишемо лінійне рівняння наступного вигляду: . Звідси або у матрично-векторній формі:

Перемноживши матриці, отримаємо систему для визначення координат власного вектора :

Система (3) – однорідна. Рішення її може бути знайдене в такий спосіб. Покладемо . Тоді, починаючи з останнього рівняння, послідовно отримаємо:

Читати далі

Програмна реалізація алгоритму LU-розкладання для знаходження власних значень несиметричної матриці

Delphi-проект призначений для розв’язку задачі на знаходження всіх власних значень несиметричної матриці і використовує для цього алгоритм методу LU-розкладання (грунтуються на приведенні заданої матриці до подібної їй матриці трикутного вигляду, більш детальна інформація про який міститься за посиланням Знаходження власних значень матриці використовуючи алгоритм LU-розкладання). Інтерфейс головної форми проекту аналогічний проектам, в яких було реалізовували інші чисельні методи розв’язку задач на власні значення (метод вичерпування на delphi, метод Крилова на delphi, степеневий метод на delphi та інші), лише з однією відмінністю – передбачено можливість задати точность обчислювального процесу.

Ліва частина форми містить область вхідних даних, яка складається з однієї кнопки типу TButton (кнопка “Знайти власні значення матриці” — реалізує алгоритм LU-розкладання для знаходження власних значень вхідної матриці), одного поля вибору типу TSpinEdit (поле вибору “Виберіть розмірність матриці” відповідає за число рядків та стовпців вхідної матриці), одного поля вводу типу TEdit (поле “Точність обчислень” відповідає за точність з якою необхідно знайти власні значення вхідної матриці) та таблиці TStringGrid у комірки якої, способом введення з клавіатури, записуються значення елементів вхідної матриці. Праву частину форми займає компонент типу TMemo, основним призначенням якого є вивід результату роботи програми.

Читати далі

Знаходження власних значень матриці використовуючи алгоритм LU-розкладання

Частіше, принаймні, в несиметричному випадку, алгоритми наближеного рішення повних проблем власних значень грунтуються на приведенні заданої матриці до подібної їй матриці не діагонального, а трикутного вигляду. Найпоширенішим серед таких є алгоритм, що спирається на LU-розкладанні матриці. Розглянемо його більш детально. Для цього розглянемо квадратну матрицю  розмірності , записану у вигляді добутку , де  і  – відповідно нижня і верхня трикутні матриці, елементи яких обчислюються за наступними формулами :

Зауваження: більш детальну інформацію про обчислення елементів матриць  і  можна знайти за посиланням Розв’язок СЛАР методом LU-факторизації.

Далі, позначимо , після чого, роз’вяжемо дану рівність відносно . В результаті отримаємо . Підставимо останній вираз у формулу LU-розкладання матриці , отримаємо перетворення подібності , яке говорить про подібність матриць  та  і відповідно про рівність їх власних значень.

Далі, представимо матрицю  у вигляді , після чого, поклавши , отримаємо нову матрицю, подібну до матриць  і  відповідно. Продовжуючи даний процес далі, можна зробити висновок, що алгоритм знаходження власних значень згідно з алгоритмом LU-розкладання визначається фактично двома формулами:

Читати далі

Відшукання всіх власних значень симетричної матриці методом обертань в середовищі delphi

Delphi-проект призначиний для відшукання всіх власних значень симетричної матриці. Основна ідея даного методу складається з послідовності ортогональних перетворень подібності матриці. Кожне перетворення – це плоский поворот з метою обнулення одного з недіагональних елементів матриці. Послідовні перетворення не зберігають вже встановлені на попередніх кроках нульові елементи, проте разом з тим позадіагональні елементи стають меншими і меншими до тих пір, поки матриця не стане діагональною або близькою до неї з заданою точністю.

Після того, як задану точність було досягнуто, діагональні елементи отриманої матриці будуть приблизно рівними шуканим власним значенням.

Більш детальну інформацію про знаходження власних значень матриці методом обертань можна знайти за посиланням Розв’язок повної проблеми власних значень методом обертань.

Читати далі