Категорія: Чисельні методи розв’язування рівнянь з однією змінною

Межі дійсних коренів многочлена з дійсними коефіцієнтами

Наближене обчислення кореня, будь-якого алгебраїчного рівняння, як правило, розпадається на дві задачі: відокремлення коренів, тобто визначення інтервалів, в кожному з яких міститься тільки один корінь рівняння; уточнення коренів, тобто обчислення його з заданим степенем точності. Прте, перш ніж відокремлювати корені, природно визначити межі області, в якій розташовані всі корені рівняння.

Межі дійсних коренів многочлена

В даному параграфі розглянемо один із способів відшукання цих меж, для випадку, коли алгебраїчне рівняння являється многочленом -ї степені:

Покажемо, спочатку, що для рівняння такого виду, достатньо вміти знаходити лише верхню межу його додатних коренів. Отже, нехай  – верхня межа додатних коренів рівняння (1). Тоді, якщо числа  будуть верхіми межами додатних коренів многочленів відповідно, то буде нижньою межею додатних коренів многочлена (1), а числа і служать нижньою і верхньою межами від’ємних коренів многочлена  відповідно. Таким чином, всі додатні корені  задовольняють нерівність , а від’ємні – нерівність .

Читати далі

Знаходження всіх дійсних коренів алгебраїчного рівняння шляхом видалення вже знайдених коренів

Один із недоліків методу половинного ділення чи будь-якого з ітераційних методів розв’язку нелінійних алгебраїчних рівнянь є той факт, що процес збігається невідомо до якого кореня. Сьогодні розглянемо один із способів уникнути даної проблеми, який полягає у видалені вже знайденого кореня.

Отже, нехай задано рівняння , для якого на заданому відрізку необхідно знайти всі дійсні корені (відмітимо що функція на даному відрізку є неперервною). Далі припустимо, що є простий корінь рівняння (1), тоді допоміжна функція буде також неперервною на даному інтвалі, причому всі нулі функцій  та співпадають за винятком , тобто . Якщо  кратний корінь рівняння (1), то він буде нулем і для  кратності на одиницю менше. Решта нулів обох функцій як і раніше будуть однакові. Тому знайдений корінь можна видалити, тобто перейти до функції . Тоді знаходження інших нулів  зведеться до знаходження нулів .

Далі, припустимо, що на другому кроці ми знайшли деякий корінь функції . Цей корінь теж мжна видалити, ввівши нову допоміжну функцію . Відзначимо, що таким чином можна послідовно знайти всі корені заданого рівняння (1).

Читати далі

Використання інтерполяційних методів для ровз’язку нелінійних рівнянь

Ідея інтерполяційних методів полягає в тому, що задача знаходження коренів рівняння на проміжку , замінюється задачею знаходження коренів інтерполяційного полінома , побудованого для функції .

Розглянемо випадок, коли для  будується інтерполяційний поліном першого порядку інтерполяційний метод першого порядку. Припустимо, що нам відомі наближення і до кореня рівняння (1) (відмітимо, що в якості нульового і першого наближень зазвичай беруться наступні знаення або , де – достатньо мале число). Вибравши їх в якості вузлів інтерполяції, побудуємо для функції  інтерполяційний поліном у формі Ньютона для нерівновіддалених значень аргументу:

де – розділена різниця першого порядку. Замінюючи в рівнянні (1) функцію  інтерполяційним поліномом (2), одержимо лінійне рівняння . Приймаючи його розв’язок за нове наближення, приходимо до інтерполяційного методу першого порядку:

Відмітимо, що процес знаходження розв’язку рівняння (1) згідно інтерполяційного методу першого порядку, як і будь-якого іншого методу рішення задач такого типу, необхідно продовжувати до тих пір, поки модуль різниці між двома сусідніми значеннями наближень не стане меншим за деяке число , тобто .

Читати далі

Розв’язок алгебраїчних рівнянь методом послідовних наближень з використанням схеми Горнера

Для знаходження розв’язку алгебраїчних рівнянь степінь яких перевищує два можна також застосувати метод послідовних наближень з використанням схеми Горнера для ділення лівої частини рівняння на , де – дійсний корінь рівняння. У методі послідовних наближень, що застосовуються при вирішенні рівнянь такого типу, відшукується послідовність чисел , яка збігається до числа , яке є коренем рівняння. Ми будемо вважати хорошим наближенням до кореня , якщо залишок від ділення лівої частини рівняння на досить малий. Розглянемо даний процес більш детально. Для цього в рівнянні

відбираємо три останніх члена і знаходимо розв’язок отриманого квадратного рівняння . Якщо корені цього рівняння дійсні, то перерходимо до рішення рівняння , після чого, за перше наближення кореня рівняння (1) приймаємо розв’язок даного рівняння, тобто:

Читати далі

Розв’язок алгебраїчних рівнянь методом Лобачевського з використанням процесу квадрування

Нехай дано рівняння:

Метод Лобачевського

про корені якого відомо, що вони різними по абсолютній величині, тобто такзвана умова “набагато більше” (Метод Лобачевського) для них не виконується. Для таких випадків Лобачевським було запропоновано алгоритм, який базується на процесі квадрування. Тобто, якщо до рівняння (1), достатню кількість раз застосувати даний процес, то можна отримати нове рівняння, корені якого задовільняють умовіМетод Лобачевського. Таким чином ми зможемо знайти корені останнього рівняння, після чого і корені рівняння (1). Отже, давайте розглянемо в чому полягає алгоритм процесу квадрування. Для цього розкладемо рівняння (1) на на Метод Лобачевського лінійних множників:

Метод Лобачевського

Далі, запишемо рівняння, корені якого будуть протилежні за знаком до коренів рівняння (1). Таке рівняння буде мати наступний вигляд:

Читати далі