Категорія: Подільність натуральних чисел

Ознаки подільності на 2, 3, 4, 5, 8, 9, 10 і 11

Правила подільності або тести подільності мають широкий спектр застосувань в математиці. До прикладу, скориставшись даними правилами при розкладанні чисел на прості множники чи визначенні, чи є число простим чи складеним, можна значно спростити обчислювальний процес задач такого типу. Зазначимо, що опанувавши матеріал цього параграфа, Ви дізнаєтесь, як, не виконуючи операцію ділення, визначити, чи ділиться дане натуральне число націло на 2, 3, 4, 5, 8910 і 11.

  1. ознака подільності на 2: число ділиться на 2 тоді і тільки тоді, коли воно закінчується парною цифрою, тобто однією з цифр 0, 2, 4, 6, 8.

    Доведення покажемо на прикладі чотиризначного числа. Отже, нехай – десяткова запис деякого числа , тобто – цифра тисяч, – цифра сотень, – цифра десятків і – цифра одиниць даного числа. Значить, . Нехай  ділиться на 2. Так як 1000, 100 і 10 діляться на 2, то за властивістю 4 подільності (міститься нижче) числа , і  також діляться на 2. Тоді за властивістю 2 подільності сума ділиться на 2 і за тією ж властивістю, число теж ділиться на 2. І навпаки, якщо  ділиться на 2, то з огляду на подільність на 2 доданків  і  маємо:  ділиться на 2 (по властивості подільності). Наприклад, число 2300574 діляться на 2, а 100001 не діляться. Абсолютно аналогічно доводяться наступні дві ознаки подільності;

Читати далі

Найменше спільне кратне двох натуральних чисел

Кратним числа називається таке число, яке саме ділиться на  без залишку. Спільне кратне чисел і – це число, що є кратним для кожного з них.

До прикладу, числа 10 і 15 мають спільне кратне 180. Числа 150, 120, 90 – також є спільними кратними цих чисел. Серед всіх спільних кратних завжди є найменше, в даному випадку таким являється число 30. Це число називають найменшим спільним кратним (НОК) і позначають .

Щоб знайти найменше спільне кратне двох чисел, потрібно розкласти їх на прості множники. Після цього, необхідно вибрати всі прості множник що входять в обидві множини та перемножити їх між собою. На наступному кроці, отриманий результат необхідно також помножити на прості множники, числа , які не являються множниками числа  та прості множникик числа , що не являються простими множниками числа . До прикладу, для чисел 441 та 350 даний процес виглядатиме наступним чином:

Читати далі

Розкладання чисел на прості множники

Нагадаємо, що цілі додатні числа більші за одиницю діляться на прості та складені. Різниця між ними полягає в числі дільників. Просте число має два натуральних дільники – одиницю та самого себе. Наприклад, 2, 3, 5, 7, 11,… (одиниця не є простим числом). Число, яке має більше ніж два натуральних дільники, називається складеним. Зазначимо, що будь-яке складене число можливо представити як добуток простих чисел. Наприклад, число 20 можна представити як , де 2 та 5 – прості числа. Саме таке представлення і називається розкладанням чисел на прості множники.

Зазначимо, що складене число розкладається на прості множники єдиним чином. Це означає, що якщо, наприклад, число 20 розклалося на дві двійки і одну п’ятірку, то воно завжди буде так розкладатися незалежно від того, почнемо ми розкладання з малих множників чи з великих. Прийнято починати розкладання з малих множників, тобто з двійок, трійок і так далі. Це зручніше тому, що про подільність числа на 2, на 3, на 5 легше судити, ніж про його подільність, наприклад, на число 59 чи 67.

Два способи отримання одного розкладання

Знову-таки повертаючись до нашого прикладу, бачимо, що для невеликих чисел здогадатися яким буде їх розкладання доволі легко. Виникає питання, яким же чином виконується розкладання на множники великих чисел? Зазначимо, що тут нам допоможуть ознаки подільності та таблиця простих чисел. Покажемо, як за їх допомогою отримати розкладання деякого натурального складеного числа .

Читати далі

Знаходження простих чисел використовуючи решето Ератосфена

Просте число – натуральне ціле додатне число, що має рівно два різних натуральних дільники – одиницю і самого себе. Іншими словами, число є простим, якщо воно більше одиниці і при цьому ділиться без залишку тільки на 1 та на . Наприклад, 3просте число, а число 6 ні – крім 1 та 6, також ділиться на 2 і на 3.

Таблиця простих чисел до 1000

Натуральні числа, які являються більшими одиниці і не є простими, називаються складеними. Таким чином, всі натуральні числа розбиваються на три класи: одиницю (має один натуральний дільник), прості числа (мають два натуральних дільники) і складені числа (мають більше двох натуральних дільників).

Читати далі

Знаходження найбільшого спільного дільника за алгоритмом Евкліда

Кожен дільник натурального числа  не може бути більшим самого числа , тому число  має скінченне число дільників, які не перевищують .

Серед дільників чисел і  можуть бути однакові, тобто спільні дільники. Очевидно, їх кількість так само є скінченною. Наприклад, числа 30 і 70 мають чотири спільних дільники: 1, 2, 5 і 10. Серед цих дільників є найбільший (в даному випадку 10), його називають найбільшим спільним дільником (НСД) і позначають .

Отже, найбільшим спільним дільником двох натуральних чисел називається найбільше натуральне число, на яке ділиться кожне з цих чисел без залишку. З даного означення випливає, що для того, щоб знайти НСД чисел і , на першому кроці, необхідно знайти всі додатні дільники числа і всі додатні дільники числа . Далі, необхідно вибрати всі числа, що входять в обидві множини, та визначити найбільше серед них. Воно і буде найбільшим спільним дільником.

Другий із способів знаходження НСД полягає в тому, що кожне із заданих чисел необхідно розкласти на прості множники. Потім, виписуємо окремо тільки ті множники які для чисел  і  є спільними. Після цього, перемножуємо між собою виписані числа. Результат перемноження і буде найбільшим спільним дільником. Для чисел 441 та 350 даний процес виглядатиме наступним чином:

Читати далі