Категорія: Чисельне диференціювання та інтегрування

Обчислення наближеного значення похідної функції в точці

Похідна – це математичне поняття, яке широко використовується при розв’язку багатьох задач з математики, фізики та інших наук. Зокрема на даному сайті, нами було розглянуто велике коло чисельних методів, які використовуючи поняття похідної, реалізують процес наближеного розв’язку нелінійних рівнянь та відшукання найбільшого чи найменшого значень функції на заданому проміжку (відмітимо, що з даної групи методів, найбільш відомим являється метод Ньютона, який за скінченне число ітерацій, знаходить наближені значення коренів нелінійного рівняння).

Похідна функції в деякій точці характеризує швидкість зміни функції в цій точці. Оцінку швидкості зміни можна отримати, обчисливши відношення зміни функції до відповідної зміни аргументу . У визначенні похідної таке відношення розглядається за умови, що . Перейдемо до більш детального аналізу даного поняття.

Для цього, розглянемо деяку функцію , неперервну в околі точки і нехай – приріст аргументу в точці . Позначимо через або приріст функції, який дорівнює . Відзначимо тут, що функція неперервна в точці , якщо в цій точці нескінченно малому приросту аргументу відповідає нескінченно малий приріст функції .

Читати далі

Чисельне інтегрування функції методом Ромберга

Перш ніж приступити до розгляду чергового методу чисельного інтегрування, нагадаємо, що інтеграл від функції чисельно дорівнює площі криволінійної трапеції, обмеженої графіком цієї функції і межами інтегрування . Відмітимо, що розглядувані на даному сайті методи (метод прямокутниківметод трапецій, метод Сімпсона), базуються на процедурі поділу відрізка  на елементарних частин, після чого, площа криволінійної трапеції обчислюється, як сума площ  прямокутників чи трапецеїдних фігур (в залежності від вибраного методу). Проте, результат отриманий згідно даних методів, сильно залежить від величини кроку (), що позначається на точності обчислення визначеного інтеграла особливо в тих випадках, коли функція має немонотонний характер.

Використання екстраполяції Річардсона, при інтегруванні відомими методами, дозволяє значно скоротити машинний час при незмінній точності результату (оскільки уточнення результату інтегрування не потребує додаткових обчислень функції). Застосування наведеної нижче методики до ітераційної формули трапецій складає розглядуваний метод Ромберга.

Далі, розглянемо основну суть екстраполяції Річардсона. Для цього, вибиремо деякий крок  і розрахуємо по формулі трапецій деяке значення інтеграла . Далі, крок  зменшимо удвічі, в результаті чого, отримаємо нове значення . Тоді, згідно з екстраполяцією Річардсона, розраховане значення інтеграла може бути уточнене за формулою:

Читати далі

Обчислення довжини дуги кривої за допомогою визначеного інтеграла

Сьогодні розглянемо ще одну задачу, яка як і задача обчислення площі плоскої фігури та задача обчислення об’ємів тіл, відноститься до категорії найважливіших геометричних задач, що вирішуються методами інтегрального числення, а саме задачу знаходження довжини дуги кривої.

Для цього, припустимо, що в прямокутній системі координат задано неперервну криву , для якої необхідно знайти довжину дуги , яка розташована в інтервалі між  та .

Апроксимація елемента дуги кривої прямолінійним відрізком

Апроксимація елемента дуги кривої прямолінійним відрізком

Відмітимо, що розв’язок даної задачі почнемо поділом дуги  точками з абсцисами на частин. На наступному кроці поєднаємо дані точки відрізками , довжини яких позначимо через  відповідно. В результаті виконання даного кроку, ми отримали ламану лінію , вписану в дугу . Довжина даної ламаної складається з довжин відрізків , тобто:

Читати далі

Обчислення подвійних інтегралів методом клітин

Розглянемо метод клітин на прикладі подвійного інтеграла. Відмітимо, що зробивши відповідні зміни, його можна поширити і на випадок інтегралів більшої кратності. Отже, нехай маємо інтеграл виду , де – прямокутник, такий що .

З курсу математичного аналізу відома теорема про середнє. Якщо підінтегральна функція неперервна і інтегровна, то існує така точка , що, де площа прямокутника .

Якщо середнє значення функції замінити на значення функції в центрі прямокутника, то отримаємо наближену формулу:

Точність цієї формули можна підвищити, якщо область розбити на частини (на елементарні клітини) і до кожної з них застосувати формулу (1). Тобто якщо область інтегрування є прямокутник, то останню формулу перепишемо у наступному вигляді:

Читати далі

Обчислення площі плоскої фігури

За геометричним тлумаченням визначного інтегралу, площа криволінійної трапеції, яка обмежена кривою Площа криволінійної фігури , лініями plosha_ploskoi_figyru2 і plosha_ploskoi_figyru3, та віссю plosha_ploskoi_figyru4, обчислюється за формулою plosha_ploskoi_figyru5.

Криволінійна трапеція

Криволінійна трапеція

Якщо плоска фігура обмежена лініями plosha_ploskoi_figyru7 і plosha_ploskoi_figyru8, то для обчислення площі такої фігури, на першому кроці, необхідно знайти точки перетину кривих plosha_ploskoi_figyru2  і plosha_ploskoi_figyru3. Ці точки є границями інтегрування.

Читати далі