Мітки: характеристичний многочлен

Знаходження оберненої матриці використовуючи коефіцієнти характеристичного многочлена в середовищі програмування delphi

Програма написана в середовищі програмування Delphi і призначена для знаходження оберненої матриці використовуючи для цього коефіцієнти характеристичного многочлена. Алгоритм побудови оберненої матриці в такий спосіб включає наступні етапи: знаходження степеней заданої матриці; відшукання коефіцієнтів характеристичного многочлена; формування оберненої матриці. Більш детальна інформація про даний алгоритм міститься за посиланням Знаходження оберненої матриці з допомогою коефіцієнтів її характеристичного многочлена.

Головна форма delphi-проекту складається з панелі інструментів (містить кнопку «Знайти обернену матрицю»; компонент SpinEdit з допомогою якого задаєм розмірність матриц; компонент StringGrid, в комірки якого заповнюємо значеннями елементів вхідної матриці) та області виводу знайденої оберненої матриці (компонент Memo – міститься в правій частині форми).

Читати далі

Знаходження оберненої матриці використовуючи коефіцієнти її характеристичного многочлена

Нехай маємо деяку невироджену матрицю розмірності , характеристичний многочлен якої записаний у наступному вигляді:

Покажемо, яким чином за допомогою коефіцієнтів цього характеристичного многочлена та послідовності маириць , порівняно просто можна знайти обернену матрицю Обернена матриця. Для цього, скориставшись теоремою Гамільтона-Келі (при підстановці матриці в її характеристичний многочлен, виходить нульова матриця, іншими словами, матриця являетса коренем свого характеристичного многочлена), отримаємо:

Помноживши матричну рівність (1) на Обернена матриця зліва, отримуємо:

Читати далі

Відшукання власних значень матриці використовуючи метод Федєєва в середовищі програмування Delphi

Програма призначена для відшукання власних значень матриці використовуючи метод Федєєва. Даний метод являється модифікацією методу Левер’є і за рахунок певних спрощень при обчисленні коефіцієнтів характеристичного многочлена, вважається більш ефективним. Також слід відмітити, що  з допомогою методу Федєєва можна також визначити власні вектори та знайти обернену матрицю до заданої.

На вході програма приймає квадратну матрицю розмірності N×N. Після чого, використовуючи алгоритм методу Федєєва, відшукує коефіцієнти характеристичного многочлена і в подальшому, з допомогою методу хорд, знаходить корені характеристичного рівняння. Отриманий розв’язок і являтиметься шуканими власними значеннями заданої матриці.

Читати далі

Програмна реалізація алгоритму методу Левер’є для знаходження власних значень матриці

Створений delphi-проект, в залежності від величин N (кількість рядків та стовпців), створює матрицю розміром N×N і призначена для знаходження власних значень для даної матриці (діапазон розмірності матриці змінюється від 2 до 5). В якості методу програма викристовує метод Левер’є. Алгоритм розкриття вікового визначника з допомогою даного методу доволі простий: в першу чергу здійснюється відшукання матриць Ak – степені матриці А і в подальшому знаходженні суми їх діагональних елементів (більш детальна інформація про даний методу містиься за посиланням Знаходження власних значень матриці за методом Левер’є).

Запустивши розглядуваний проект на виконання бачимо, що головне вікно програми ділиться на дві частини: робочої області (складається з поля “Розмірність матриці”, таблиці StringGrid в комірках якої відображаються елементи матриці і кнопки “Знайти власні значення матриці“) та поля виводу результатів (компонент Memo).

Читати далі

Знаходження власних значень матриці використовуючи метод Фадєєва

Метод Фадєєва також відноситься до точних чисельних методів призначених для відшукання власних значень матриці і являється певною модифікацією методу Левер’є. Даний метод вважається більш ефективним, тому що крім спрощень при обчисленні коефіцієнтів характеристичного полінома він дозволяє визначити власні вектори та обернену матрицю до заданої.

Основна ідея методу Фадєєва полягає в тому, що замість послідовності Метод Федєєва, яку ми відшукували використовуючи алгоритм методу Левер’є, обчислюють послідовність Метод Федєєва, побудовану за наступними формулами:

Метод Фадєєва

де Метод Фадєєва – одинична матриця того ж самого порядку, що і матриця Метод Фадєєва; Метод Фадєєва сліди матриць Метод Федєєва відповідно.

Читати далі