Знаходження компонент сильної зв'язності орієнтованого графа

Компонентою сильної зв'язності орієнтованого графа називається максимальна множина його вершин, в якій існують шляхи з будь-якої вершини в будь-яку іншу. Так наприклад, граф , зображений на рисунку що міститься нижче, складається з чотирьох компонент сильної зв'язності: , , і .

komponenty_sylnoi_zvjaznosti_grafa110

Орієнтований граф та його компоненти сильної зв'язності

Як видно з рисунка, кожна вершина орієнтованого графа  належить певній компоненті сильної зв'язності, але деякі ребра можуть не належати жодній з них. Такі ребра з'єднують вершини з різних компонент.

Читати повністю

Топологічне сортування вершин орієнтованого графа

Нехай розглядається деякий орієнтований граф який не містить циклів. Під топологічним сортуванням даного графа розуміють процес лінійного впорядковування його вершин таким чином, що якщо в графі існує ребро , то, в упорядкованому списку вершин графа , вершина  передує вершині . Якщо в орієнтованому графі є цикли, то упорядкованого таким чином списку для нього не існує.

topologichne_sortuvannja_grafa28

Орієнтований граф та один з варіантів топологічного сортування його вершин

Відмітимо, що задачу про топологічне сортування можна переформулювати наступним чином: розмістити вершини орієнтованого графа на горизонтальній прямій таким чином, щоб всі його ребра йшли зліва направо. У житті це відповідає, наприклад, наступним проблемам: в якому порядку слід здійснювати розв'язок задачі, якщо вона розпадається на підзадачі і виконання деяких підзадач, зазвичай, починається слідом за закінченням інших; в якому порядку слід розташовувати теми в шкільному курсі математики, якщо для кожної теми відомо, знання яких інших тем необхідні для її вивчення; в якому порядку необхідно розподілити опис процедур в програмі, якщо деякі процедури можуть містити звернення до інших процедур.

Читати повністю

Перевірка орієнтованого графа на наявність циклів

Розглядаючи алгоритм обходу орієнтованого графа в глибину ми звертали увагу на те, що більшість задач, що стосуються графів такого типу, вирішуються з використанням даного алгоритму. Сьогодні розглянемо задачу, яка полягає у визначенні того, чи являється орієнтований граф ациклічним (нагадаємо, що орієнтований граф називають ациклічним, якщо в ньому немає циклів; циклом в орієнтованому графі називається шлях, що веде з вершини в саму себе), і покажемо, яким чином дана задача вирішується з допомогою глибинного обходу графа.

Отже, розглянемо деякий орієнтований граф . Для того, щоб перевірити даний граф на наявність циклів, виконуємо глибинний обхід всіх його вершин. В результаті, отримаємо дерево обходу в глибину. Якщо в побудованому дереві зустрінеться хоча б одне зворотне ребро, то ясно, що орієнтований граф має цикл. Справедливе і обернене твердження, тобто, якщо в орієнтованому графі є цикл, тоді зворотне ребро обов'язково зустрінеться при його обході методом пошуку в глибину. Щоб довести це, припустимо, що орієнтований граф  має цикл.

Перевірка орієнтованого графа на наявність циклів

Нехай при обході даного графа методом пошуку в глибину вершині присвоєно найменшу глибину обходу серед усіх вершин, що становлять цикл. Розглянемо ребро , що належить цьому циклу. Оскільки вершина входить в цикл, то вона повинна бути нащадком вершини  в побудованому дереві обходу в глибину. Тому ребро  не може бути поперечним. Але, виходячи з того, що глибина обходу вершини  більша за глибину обходу вершини  то ребро  також не може бути ні ребром дерева ні прямим ребром. Звідси, ребро  є зворотним, як показано на малюнку, що міститься вище.

Читати повністю

Обхід орієнтованого графа в глибину

Як показує практика, більшість задачах, пов'язаних з графами, тою чи іншою мірою зводяться до систематичного обходу всіх його вершин. Відмітимо, що на даному сайті нами було розглянуто два найбільш часто використовуваних методи обходу графів — це пошук в глибину та пошук в ширину. Проте, хочиться зазначити, що обидва ці методи ми ефективно використовували для розв'язку задач пов'язаних лише з неорієнтованими графами. Сьогодні, запишемо алгоритм обходу в глибину для орієнтованого графа і, в подальшому, пркажемо яким чином, з його допомогою вирішуються такі задачі як перевірка орієнтованого графа на ациклічність, топологічне сортування та знаходження сильно зв'язних компонентів орієнтованого графа.

Обхід в глибину орієнтованого графа

По суті, послідовність дій при глибинному обхід орієнтованого графа нічим не відрізняється від обходу неорієнтованого графа. Для того, щоб показати це, розглянемо деяки орієнтований граф , для якого, спочатку, всі вершини вважаються не пройденими, а ребра не перерглянутими. Пошук в глибину, починається з вибору початкової вершини . Відмітимо, що дана вершина після цього вважається пройденою. На наступному кроці, вибирається будь-яке не переглянуте, інцидентне вершині  орієнтоване ребро, наприклад (при цьому говорять, що  — початкова вершина ребра, а  — кінцева вершина). Якщо вершина  раніше не була пройдена, то використовуючи ребро  переходимо у вершину  і продовжуємо пошук з неї. Ребро  після цих дій вважається переглянутим і називається ребром дерева, а вершина  називається батьківською по відношенню до вершини . Якщо ж вершина  була раніше пройдена, то продовжуємо пошук іншого не пройденого ребра, інцидентного . В цьому випадку ребро  також вважається переглянутим і називається зворотним, прямим або поперечним ребром (яким чином розрізняють ці три типи ребер буде показано нижче).  Коли всі вершини, які можна досягти з вершини , будуть пройдені, пошук закінчується. Якщо, після цього, деякі вершини залишилися не пройденими, то вибирається одна з них і пошук повторюється. Цей процес триває до тих пір, поки всі вершини орграфа  не будуть пройденими.

Читати повністю

Знаходження точок сполучення зв'язного неорієнтованого графа та перевырка його на двозв'язність

Точкою сполучення неорієнтованого графа називається вершина, при видаленні якої, разом з усіма суміжними її ребрами, збільшується кількість компонент зв'язності графа. Відповідно, для зв'язного графа точкою сполучення називається вершина, при видаленні якої граф перестає бути зв'язним. Наприклад, точками сполучення для графа, який зображено на малюнку що міститься нижче, є вершини і . Якщо видалити вершину , то граф, який складається з однієї компоненти зв'язності, розбивається на два підграфи і . Якщо видалити вершину , то граф розбивається на підграфи і . Але якщо видалити будь-яку іншу його вершину, то в цьому випадку, розбити зв'язну компоненту з якої складається даний граф на кілька частин, не вдасться. Зв'язний граф, який не має точок сполучення, називається двозв'язним.

Точки сполучення неорієнтованого графа

Графічне представлення алгоритму пошуку точок сполучення в неорієнтованому графі

Метод знаходження точок сполучення часто застосовується для вирішення важливої проблеми, що стосується -зв'язності графа. Граф називається -зв'язним, якщо видалення будь-яких вершин не приведе до його розчленування. Зокрема, граф має зв'язність рівну два або вище тоді і тільки тоді, коли він не має точок сполучення, тобто тільки тоді, коли він є двозв'язним. Чим вища зв'язність графа, тим більше можна видалити вершин з цього графа, не порушуючи його цілісність, тобто не розбиваючи його на окремі компоненти.

Читати повністю

Пошук Гамільтоновго циклу в неорієнтованому графі

Гамільтоновим циклом (Гамільтоновим ланцюгом) неорієнтованого графа називають простий цикл, що містить всі його вершини в точності по одному разу. Зовні визначення Гамільтонового циклу схоже на визначення Ейлерового циклу. Однак є кардинальна відмінність в складності розв'язку відповідних задач на розпізнавання і побудову. Тобто, якщо при розгляді Ейлерового циклу ми бачили, що для нього існує досить простий критерій перевірки його існування і ефективний алгоритм його побудови. То для Гамільтонових же циклів невідомо ніяких необхідних і достатніх умов їх існування, а всі відомі алгоритми вимагають, для деяких графів, перебору великого числа варіантів.

Читати повністю

Побудова Ейлерового циклу в неорієнтованому графі використовуючи алгоритм Флері

Перш ніж приступити до розгляду чергового алгоритму рішення задачі пошуку Ейлерового циклу нагадаємо собі означення та необхідну умову його існування в неорієнтованому графі. Отже, Ейлеровим циклом називається замкнутий маршрут, в якому кожне ребро графа зустрічається точно один раз. Згідно з твердженням, яке ми розглядали в минулому параграфі, для існування такого маршруту в зв'язному графові необхідно і достатньо, щоб степені всіх його вершин були парними. Відмітимо, що в даному параграфі нами вже було вивчено один з можливих вірівнтів знаходження Ейлерового циклу, який базується на використанні алгоритму обходу графа в глибину. Сьогодні розглянемо дещо простішу та наочнішу процедуру відому під назвою алгоритм Флері.

Читати повністю

Наступна сторінка »