Графічний метод. Знаходження розв'язку задачі нелінійного програмування графічним методом

Перш ніж приступити до розгляду методу, нагадаємо, що задача нелінійного програмування може бути розв'язана графічно лише в тому випадку, коли число невідомих в задачі такого типу не перевищує два. Тобто коли необхідно знайти найбільше чи найменше значення цільової функції при наступних обмеженнях:

Після того, як формулювання задачі нелінійного програмування з двома невідомими та в загальному вигляді відоме, перейдемо до розгляду основних етапів її розв'язку з допомогою графічного методу:

  1. Отже, на першому етапі, як і у випадку графічного розв'язку задачі лінійного програмування, замінючи нерівності в системі обмежень (2) на строгі рівності, визначаємо і виділяємо на прлощині область допустимих розв'язків. Якщо систему (2) несумісна, то це означає, що задача нелінійного програмування розв'язків не має.
  2. На площині  будуємо сімейство функцій (де  — заданий параметр) і таким чином визначємо напрямок зростання (спадання) цільової функції.
  3. Далі, змінюючи значення параметра  в потрібному напрямку, знаходимо функцію  із мінімальним або максимальним (в залежності від виду екстремуму) значенням .  Якщо функція  на цій множині необмежена, то задача нелінійного програмування розв'язків не має.
  4. Знаходимо точку і значення функції у ній .

Розв'язок задачі нелінійного програмування графічним методом — приклад:

Знайти максимальне та мінімальне значення функції мети при наступних обмеженнях:

Для цього, згідно розглянутого вище алгоритму, на першому кроці, на площині  необхідно визначити область допустимих розв'яків. Отже, замінимо нерівності в системі обмежень на строгі рівності та побудуємо прямі, рівняння яких ми отримали в результаті даної заміни. На наступному кроці визначимо півплощини, що відповідоють кожному обмеженню задачі і таким чином визначимо область допустимих розв'язків (відмітимо що для даної задачі область допустимиз розв'язків утворює пятикутник з вершинами в точках на малюнку виділений зашстрихованою областю).

Область допустимих розв'язків задачі

Область допустимих розв'язків задачі

Далі, побудувавши на площині  декілька функцій  з різними значеннями  бачимо, що цільова функція являє собою сімейство еліпсів, розміри яких збільшується (зменшується) зі зменiенням (збільшенням) параметра . Тобто, точкою максимуму являється точка (співпадає з центром побудованих еліпісів), а точкою мінімуму — точка .

Визначення точки максимуму та мінімуму цільової функції

Визначення точки максимуму та мінімуму цільової функції

Підставивши координати точок та в цільову функцію, отриамємо її максимальне та мінімальне значення відповідно:

Матеріал був корисним, поділись в соціальних мережах:

Якщо тобі сподобалась дана тема, залиш свій коментар