Знаходження власних значень симетричної тридіагональної матриці в середовищі програмування delphi

Програма, написана в середовищі програмування delphi 7, і призначена для знаходження власних значень симетричної тридіагональної матриці, використовуючи при цьому метод половинного ділення. Інтерфейс delphi-проекту аналогічний проектам, в яких було реалізовували інші чисельні методи розв'язку задач на власні значення (метод вичерпування на delphi, метод Крилова на delphi, степеневий метод на delphi та інші), лише з двома відмінностями: передбачено можливість вказати порядковий номера власного значення та точність з якою необхідно його обчислити. Тобто, для того, щоб відшукати будь-яке власне значення матриці необхідно, на першому кроці, у відповідне поле, задати її розмірність, заповнити комірки таблиці StringGrid значеннями її елементів, вказати номер власного значення і точність обчислювального процесу після чого скористатись кнопкою «Знайти власне значення матриці».

Інтерфейс delphi-проекту "Знаходження власних значень матриці методом половинного ділення"

Інтерфейс delphi-проекту "Знаходження власних значень матриці методом половинного ділення"

Результатом роботи програми є вивід в правій частині форми наближеного значення для шуканого власного значення.

Читати повністю

Знаходження власних значень тридіагонольної симетричної матриці методом половинного ділення

Перш ніж приступити до розгляду методу половинного ділення, та застосування його для знаходження власних значень тридіагонольної симетричної матриці, попередньо розглянемо означення послідовності Штурма, та основну її властивість, на якій грунтується даний метод.

Отже, нехай маємо деяку тридіагональну матрицю виду:

Відзначимо, що матриці такого виду виникають при описі або рішення деяких прикладних задач. Крім того, задачі на власні значення для симетричних трехдіагональной матриць іноді є частиною рішения задач на знаходження власних значень довільних симетричних матриць. Природно, що задача знаходження власних значень симетричних трехдіагональной матриць простіше, ніж аналогічна задача для довільної симетричної матриці.

Читати повністю

Знаходження власних значень та власних векторів матриці методом вичерпування в середовищі delphi

Програма знаходить рішення задач на власні значення використовуючи для цього метод вичерпування. Основна ідея даного методу полягає у розв'язку послідовності задач на відшукання максимального по абсолютній величині власного значення та відповідного йому власного вектора деякої матриці. Тобто для знаходження, наприклад, другого власного значення, необхідно, щоб попереднеє власне значення та відповідний йому власний вектор, а також власний вектор транспонованої матриці, вже були відомими. Після цього, згідно алгоритму методу вичерпування, з допомогою даних величин та самої матриці Метод вичерпування на delphi формується деяка матриця Метод вичерпування на delphi (подібна до матриці Метод вичерпування на delphi), максимальним по абсолютній величині власним значенням якої є шукане друге власне значення заданої матриці Метод вичерпування на delphi. Більш детальна інформація про даний метод міститься за посиланням Знаходження власних значень та власних векторів матриці методом вичерпування.

Читати повністю

Рішення задач на власні значення методом вичерпування

Для визначення другого власного значення матриці та відповідного йому власного вектора можна скористатись ще одним способом, який називається методом вичерпування. Нехай маємо деяку матрицю Метод вичерпування, елементами якої є дійсні числа, і нехай власні значення даної матриці впорядковані наступним чином: Метод вичерпування.

Поряд з матрицею Метод вичерпування, розглянемо ще одну матрицю Метод вичерпування, де Метод вичерпування — перше власне значення матриці Метод вичерпування; Метод вичерпування — відповідний власний вектор матриці Метод вичерпування, розглядуваний як матриця-стовпець; Метод вичерпування — власний ветор, явий відповідає власному значенню Метод вичерпування транспонованої матриці до Метод вичерпування, розглядуваний як матриця-рядок, причому вектори Метод вичерпування та Метод вичерпування нормовані таким чином, що їх скалярний добуток дорівнює одиниці:

Читати повністю