Розв'язок алгебраїчних рівнянь методом послідовних наближень з використанням схеми Горнера

Для знаходження розв'язку алгебраїчних рівнянь степінь яких перевищує два можна також застосувати метод послідовних наближень з використанням схеми Горнера для ділення лівої частини рівняння на , де  — дійсний корінь рівняння. У методі послідовних наближень, що застосовуються при вирішенні рівнянь такого типу, відшукується послідовність чисел , яка збігається до числа , яке є коренем рівняння. Ми будемо вважати хорошим наближенням до кореня , якщо залишок від ділення лівої частини рівняння на досить малий. Розглянемо даний процес більш детально. Для цього в рівнянні

відбираємо три останніх члена і знаходимо розв'язок отриманого квадратного рівняння . Якщо корені цього рівняння дійсні, то перерходимо до рішення рівняння , після чого, за перше наближення кореня рівняння (1) приймаємо розв'язок даного рівняння, тобто:

Читати повністю

Розв'язок системи нелінійних алгебраїчних рівнянь використовуючи метод Зейделя

Нехай потрібно знайти розв'язок системи нелінійних алгебраїчних рівнянь (СНАР) виду (1), використовуючи при цьому метод Зейделя.

Розв'язок нелінійних системи методом Зейделя

Для застосування даного методу систему (1), аналогічно, як і у методі простої ітерації, за допомогою еквівалентних перетворень необхідно привести до наступного вигляду (один із способів приведення системи (1) до виду (2) можна знайти за посиланням Розв'язок систем нелінійних рівнянь методом ітерації):

metod_zejdelja_snr2

Далі, задавши початкове наближення metod_zejdelja_snr3, реалізується ітераційний процес обчислення наближень до розв'язку системи за наступними формулами:

Читати повністю