Мітки: таблиця похідних

Правила диференціювання функцій і таблиця похідних

Знаходження похідних за означенням не проста задача. Тому для відшукання похідних від функцій, які утворені з декількох елементарних функцій використовують правила диференціювання, що формулюється наступним чином:

  1. Похідна постійної величини дорівнює нулю: .
  2. Якщо кожна з функцій , , диференційовна в деякій точці , то диференційовною в цій точці є їх алгебраїчна сума, причому похідна алгебраїчної суми цих функцій дорівнює алгебраїчній сумі їх похідних: .
  3. Якщо функції  і  диференційовні в точці  , то їх добуток диференційовний в цій точці і має місце формула: .

    Зауваження: якщо функція , то , тобто постійна величина виноситься за знак похідної.

  4. Якщо функції  диференційовні в точці , причому , то їх частка також має похідну в цій точці, яка обчислюється за формулою: .

    Зауваження: якщо чисельник дробу постійна величина (функція ), то ; якщо знаменник дробу – постійна величина (функція ), то .

Зазначимо, що на підставі означення похідної та розглянутих вище правил диференціювання складається таблиця похідних основних елементарних функцій:

Читати далі