Знаходження власних значень та власних векторів матриці методом вичерпування в середовищі delphi

Програма знаходить рішення задач на власні значення використовуючи для цього метод вичерпування. Основна ідея даного методу полягає у розв'язку послідовності задач на відшукання максимального по абсолютній величині власного значення та відповідного йому власного вектора деякої матриці. Тобто для знаходження, наприклад, другого власного значення, необхідно, щоб попереднеє власне значення та відповідний йому власний вектор, а також власний вектор транспонованої матриці, вже були відомими. Після цього, згідно алгоритму методу вичерпування, з допомогою даних величин та самої матриці Метод вичерпування на delphi формується деяка матриця Метод вичерпування на delphi (подібна до матриці Метод вичерпування на delphi), максимальним по абсолютній величині власним значенням якої є шукане друге власне значення заданої матриці Метод вичерпування на delphi. Більш детальна інформація про даний метод міститься за посиланням Знаходження власних значень та власних векторів матриці методом вичерпування.

Читати повністю

Рішення задач на власні значення методом вичерпування

Для визначення другого власного значення матриці та відповідного йому власного вектора можна скористатись ще одним способом, який називається методом вичерпування. Нехай маємо деяку матрицю Метод вичерпування, елементами якої є дійсні числа, і нехай власні значення даної матриці впорядковані наступним чином: Метод вичерпування.

Поряд з матрицею Метод вичерпування, розглянемо ще одну матрицю Метод вичерпування, де Метод вичерпування — перше власне значення матриці Метод вичерпування; Метод вичерпування — відповідний власний вектор матриці Метод вичерпування, розглядуваний як матриця-стовпець; Метод вичерпування — власний ветор, явий відповідає власному значенню Метод вичерпування транспонованої матриці до Метод вичерпування, розглядуваний як матриця-рядок, причому вектори Метод вичерпування та Метод вичерпування нормовані таким чином, що їх скалярний добуток дорівнює одиниці:

Читати повністю

Знаходження максимального по абсолютній величині власного значення матриці степеневий методом в середовищі програмування delphi

Програма знаходить максимальне по модулю власне число для матриці довільної розмірності з заданою точністю використовуючи степеневий методом та дві його модифікації (теоретична частина по данх методах міститься за посиланням знаходження власного значення матриці степеневий метод). Інтерфей розглядуваного delphi-проекту аналогічний проектам, які ми розглядали для розв'язку повної проблеми власних значень (метод Федеєва на delphi, метод Левер'є на delphi та інші), лише з одною відмінністю. В ньому передбачено можливість задати точність обчислень та вибрати модифікацію степеневого методу.

stepenevuj_metod_delphi11

Інтерфейс delphi-проекту "Знаходження максимального по абсолютній величині власного значення матриці степеневий методом"

Для того, щоб знайти максимальне власне значення матриці, необхідно вказати відповідні значення та параметри в панелі задач (розмірність матриці, точність обчислень, модифікація методу), заповнити таблицю значеннями її елементів і натиснути кнопку «Знайти максимальне власне значення матриці».

Читати повністю

Часткова проблема власних значень матриці. Степеневий метод

Нехай маємо деяку матрицю Степеневий метод і нехай її власні значення впорядковані по абсолютній величині наступним чином: Степеневий метод. Тоді, вибравши деякий вектор Степеневий метод, наприклад, вектор, компоненти якого дорівнюють одиниці Степеневий метод, для визначення Степеневий метод можна побудувати наступний ітераційний процес:

Степеневий метод

де Степеневий метод і Степеневий метод — відповідні компоненти векторів Степеневий метод та Степеневий метод. При цьому в якості номера Степеневий метод може використовуватися будь-яке число з діапазону Степеневий метод.

Читати повністю