Диференціювання складної функції

Нехай дана функція  і при цьому . Тоді вихідну функцію можна представити у вигляді . Зазначимо, що функції такого типу називаються складними, а змінна  — проміжним аргументом.

Встановимо правило диференціювання складних функцій. Отже, якщо функції  і  — диференційовані, то складна функція є також диференційованою, причому:

Це правило поширюється на ланцюжок із будь-якого скінченного числа диференційованих функцій: похідна складної функції дорівнює добутку похідних функцій, які її утворюють.

Похідна складної функції — приклади розв'язання:

Приклад 1: знайти похідну функції .

Отже, маємо cкладну степеневу функцію з проміжним аргументом . Тому функцію можна подати у вигляді , де . Тоді, за формулою (1) маємо:

Читати повністю