Метод відображень. Розв'язок систем лінійних рівнянь методом відображень

Алгоритм методу відображень (Хуасхолдера) при знаходженні розв'язку системи лінійних рівнянь Метод відображення складається з Метод відображення-го кроку (де Метод відображення — розмірність матриці), після виконання яких матриця Метод відображення системи (1) приводиться до верхньої трикутної формі. Наступним етам алгоритму є відшукання значень вектора невідомих, які отримують аналогічно, як і у методі Гаусса, тобто спочатку знаходимо значення останньої компоненти вектора невідомих, потім передостанньої і так далі.

Розглянемо даний алгоритм більш детально. Нехай в результаті виконання Метод відображення-го кроку матриця коефіцієнтів Метод відображення і вектор вільних членів Метод відображення системи (1) набули наступного виду:

Метод відображення

Читати повністю

Розв'язок СЛАР методом Жордана-Гаусса в середовищі програмування Delphi

Програма знаходить рішення системи лінійних алгебраїчних рівнянь довільній розмірності методом Жордана-Гаусса. В основу алгоритму даного методу покладено ідею приведення матриці коефіцієнтів до діагонального вигляду. Слід зазначити, що перетворення, які здійснюються для приведення матриці коефіцієнтів до такого вигляду, необхідно проводити і для елементів стовпця вільних членів. В результаті виконання даного алгоритму, елементи стовпця вільних членів міститимуть значення, які являтимуться шуканим розв'язком системи. Більш детальну інформацію про метод Жордана-Гаусса можна знайти за посиланням розв'язок СЛАР методом Жордана-Гаусса.

Після запуску програми перед Вами з'явитися робоче вікно програми, в якому, на сам перед, необхідно вказа розмірність системи (оскільки система розміру n на n потрібно ввести тільки одне число).

Метод Жордана-Гаусса на Delphi

Інтерфейс програми, яка для розв'язку СЛАР використовує алгоритм методу Жордана-Гаусса

Далі, заповнюємо матрицю коефіцієнтів та стовпець вільних членів (зображені у вигляді компонентів TStringGrid) відповідними даними, вибираємо модифікацію методу Жордана-Гагусса, після чого натискаємо кнопку "Розв'язати систему рівнянь".

Читати повністю

Метод Жордана-Гаусса. Розв'язок систем лінійних рівнянь методом Жордана-Гаусса

Метод Жордана-Гаусса являється однією з модифікацій методу Гаусса і знаходження розв'язку системи лінійних алгебраїчних рівнянь з допомогою даного методу зводиться до перетворення вихідної системи до системи з одиничною або діагональною матрицею. Тобто основна відмінність між методом Гаусса і методом Жордана-Гаусса полягає в тому, що при реалізації останнього, елементи матриці обнулюються як під, так і над головною діагоналлю, а значення діагональних елементів стають рівними одиниці. В результаті даного перетворення елементи вектора вільних членів являтимуться шуканим розв'язком системи.

Розглянемо даний метод більш детально. Для цього запишемо систему лінійних рівнянь наступного вигляду:

метод Жордана-Гаусса

Обчислювальна схема методу Жордана-Гаусса складається з Метод Жордана-Гаусса циклів, в кожному з яких послідовно з допомогою Метод Жордана-Гаусса-го рядка виключаються елементи при невідомій Метод Жордана-Гаусса в кожному рядку матриці коефіцієнтів, крім Метод Жордана-Гаусса-го. Дана схема реалізується з допомогою наступних кроків:

Читати повністю

Розв'язок СЛАР методом обертання засобами Delphi

Розглянемо програмну реалізацію, ще одного методу, який для розв'язку системи лінійних алгебраїчних рівняняь (СЛАР) використовує ідею зведення матриці коефіцієнтів до трикутного вигляду. Як і в методі Гаусса, алгоритм методу обертання складається з прямого і оберненого ходу. Основна мета прямого ходу — приведення системи до трикутного вигляду послідовним обнуленням елементів, які розташовані нижче головної діагоналі. Знаходження невідомих не відрізняється від оберненого ходу методу Гаусса. Більш детально алгоритм методу обертання розглядати не будемо. Його можна знайти за посиланням Розв'язок СЛАР методом обертання. Ми ж приступимо до розгляду delphi-проекту, який реалізує даний алгоритм.

Після запуску проекту на виконання на екрані появиться вікно наступного виду:

Читати повністю

Розв'язок системи лінійних рівнянь використовуючи метод обертань

Метод Гаусса являється не єдиним методом який для розв'язку системи лінійних рівнянь використовує ідею зведення матриці коефіцієнтів до трикутного вигляду. Існує ще два методи, які можна віднести до категорії методів виключення невідомих, а саме метод обертань та метод відображень. Обидва цих методи базуються на представленні матриці qr_rozklad_matruci51 у вигляді добутку ортогональної матриці qr_rozklad_matruci52 та верхньої трикутної матриці qr_rozklad_matruci45. Нагадаємо, що матриця qr_rozklad_matruci52 називається ортогональною, якщо для неї виконується наступна умова: QR розклад матриці або qr_rozklad_matruci2.

Розглянемо спочатку метод обертань з допомогою якого будемо відшукувати розв'язок системи лінійних рівнянь наступного виду:

qr_rozklad_matruci3

Даний метод, як і метод Гаусса, складається з прямого і оберненого ходу.

Читати повністю

Знаходження розв'язку системи лінійних рівнянь використовуючи метод Гаусса з вибором головного елемента в середовищі програмування Delphi

Знаходження розв'язку систем лінійних алгебраїчних рівнянь являється однією з основних задач лінійної алгебри, а метод Гаусса (також називають методом послідовного виключення невідомих) — одним з найпоширеніших методів для рішення систем такого виду. Даний метод відомий в різних модифікаціях, серед яких виділяють метод Гаусса з вибором головного елемента.

Метод головних елементів також заснований на приведенні матриці системи до трикутного вигляду. Проте, на відміну від класичного методу Гаусса, в методі головних елементів алгоритм приведення матриці до такого вигляду дещо відрізняється. На прершому кроці, серед елементів матриці системи вибираємо максимальний за модулем елемент, який не належить стовпчику вільних членів. Нехай це буде елемент, який знаходиться в i-му рядку та j-й колонці (головний елемент). Далі, виключаємо з усіх рівнянь системи крім рівняння під номером i, невідому Xj. В результаті отримуємо матрицю, j-й стовпець якої складається з нульових елементів. Викрисливши з розгляду рядок і колонку в яких міститься головний елемен переходимо до нової матриці, яка складається з меншої на одиницю кількості рядків і колонок.

Читати повністю

Метод Гаусса з вибором головного елемента

Нехай дана система лінійних рівнянь виду (1), для якої потрібно знайти чисельний розв'язок:

Метод Гаусса з вибором ведучого елемента

Розглянемо розширену прямокутну матрицю, що складається з коєфіціентов системи (1) та її вільних членів:

Метод Гаусса з вибором головного елемента

Для даної матриці, згідно алгоритму методу Гаусса з вибором головного елемента, виберемо ненульовий, як правило, найбільший за модулем елемент, який не належить стовпцю вільних членів, тобто Метод Гаусса з вибором головного елемента. Нехай це буде елемент Метод Гаусса з вибором головного елемента (даний елемент також називають головним елементом). Далі, для кожного рядка матриці (2), крім рядка під номером Метод Гаусса з вибором головного елемента, обчислюємо множники:

Читати повністю

« Попередня сторінкаНаступна сторінка »