Розв'язок системи двох лінійних рівнянь з двома невідомими методом підстановки

Знаходження розв'язку системи лінійних рівнянь, являється однією з найбільш важливіших задач лінійної алгебри. Відмітимо, що на даному сайті розглядається велика кількість точних та ітераційних чисельних методів (метод Крамера, метод Гаусса, метод простої ітерації та інші), рішення задач такого типу. Сьогодні, доповнимо її ще одним методом, який на відміну від розглянутих, являється менш універсальним, тобто вирішує системи малої розмірності, а саме системи двох лінійних рівнянь з двома невідомими і називається методом підстановки.

Основна суть методу підстановки полягає в тому, що в одному з рівнянь системи (не важливо якому) одна невідома виражається через іншу. Після цього в друге рівняння системи, замість відповідної невідомої, підставляється вираз (отриманий на попередньому кроці), якому відповідає ця невідома. Розглянемо даний процес більш детально. Для цього припустимо, що нам необхідно знайти розв'язок система лінійних рівнянь виду:

Для того щоб розв'язати дану систему методом підстановки будемо слідувати простому алгоритму:

Читати повністю

Розв'язок СЛАР методом Жордана-Гаусса в середовищі програмування Delphi

Програма знаходить рішення системи лінійних алгебраїчних рівнянь довільній розмірності методом Жордана-Гаусса. В основу алгоритму даного методу покладено ідею приведення матриці коефіцієнтів до діагонального вигляду. Слід зазначити, що перетворення, які здійснюються для приведення матриці коефіцієнтів до такого вигляду, необхідно проводити і для елементів стовпця вільних членів. В результаті виконання даного алгоритму, елементи стовпця вільних членів міститимуть значення, які являтимуться шуканим розв'язком системи. Більш детальну інформацію про метод Жордана-Гаусса можна знайти за посиланням розв'язок СЛАР методом Жордана-Гаусса.

Після запуску програми перед Вами з'явитися робоче вікно програми, в якому, на сам перед, необхідно вказа розмірність системи (оскільки система розміру n на n потрібно ввести тільки одне число).

Метод Жордана-Гаусса на Delphi

Інтерфейс програми, яка для розв'язку СЛАР використовує алгоритм методу Жордана-Гаусса

Далі, заповнюємо матрицю коефіцієнтів та стовпець вільних членів (зображені у вигляді компонентів TStringGrid) відповідними даними, вибираємо модифікацію методу Жордана-Гагусса, після чого натискаємо кнопку "Розв'язати систему рівнянь".

Читати повністю

Метод Жордана-Гаусса. Розв'язок систем лінійних рівнянь методом Жордана-Гаусса

Метод Жордана-Гаусса являється однією з модифікацій методу Гаусса і знаходження розв'язку системи лінійних алгебраїчних рівнянь з допомогою даного методу зводиться до перетворення вихідної системи до системи з одиничною або діагональною матрицею. Тобто основна відмінність між методом Гаусса і методом Жордана-Гаусса полягає в тому, що при реалізації останнього, елементи матриці обнулюються як під, так і над головною діагоналлю, а значення діагональних елементів стають рівними одиниці. В результаті даного перетворення елементи вектора вільних членів являтимуться шуканим розв'язком системи.

Розглянемо даний метод більш детально. Для цього запишемо систему лінійних рівнянь наступного вигляду:

метод Жордана-Гаусса

Обчислювальна схема методу Жордана-Гаусса складається з Метод Жордана-Гаусса циклів, в кожному з яких послідовно з допомогою Метод Жордана-Гаусса-го рядка виключаються елементи при невідомій Метод Жордана-Гаусса в кожному рядку матриці коефіцієнтів, крім Метод Жордана-Гаусса-го. Дана схема реалізується з допомогою наступних кроків:

Читати повністю