Рівняння кривої другого порядку що описує коло

Кривою другого порядку називається лінія, що визначається рівнянням другої степені щодо поточних декартових координат. У загальному випадку це рівняння записується в наступному вигляді:

де коефіцієнти  — дійсні числа і, крім того, принаймі одне із чисел або відмінне від нуля. В залежності від того, які значення приймають дані коефіцієнти, рівняння (1) визначає на площині коло, еліпс, гіперболу або параболу. Сьогодні покажемо, якими вони повинні бути для кола. Для цього, запишемо рівняння, яке описує коло радіуса  з центром в точці :

Розкривши дужки в рівнянні такого виду та виконавши деякі тотожні перетворення, перепишемо його в наступному вигляді:

Порівнюючи далі рівняння (3) із загальним рівнянням кривої другого порядку бачимо, що для того, щоб  рівняння (1) описувало коло необхідно, щоб для нього виконувались наступні дві умови: коефіцієнти при  та  повинні бути рівні між собою і член що містить добуток координат  повинен бути відсутнім.

Читати повністю