Рівняння прямої з кутовим коефіцієнтом

В курсі аналітична геометрія існує декілька типів рівнянь прямої на площині. В залежності від умови задачі, для зручності її розв'язку, використовують той чи іншим тип. Сьогодні розглянемо перший з них, а саме рівняння прямої з кутовим коефіцієнтом. Отже, нехай дано кут , який утворює пряма  з віссю , і ордината точки перетину прямої з віссю (цю ординату також називають відрізком, який пряма відсікає на осі ). Відмітимо, що заданими величинами (параметрами) пряма цілком визначена. Знайдемо рівняння цієї прямої.

Рівняння прямої з кутовим коефіцієнтом

Графічне представлення алгоритму знаходження рівняння прямої з кутовим коефіцієнтом

Для цього, візьмемо довільну точку на прямій (праворуч від точки ) та проведемо два відрізка  і  паралельно координатним осям  та  відповідно. В результаті виконання даного кроку ми отримали прямокутник , який, як видно з побудови, являється прямокутним. А виходячи з того, що у прямокутному трикутнику тангенс гострого кута дорівнює відношенню протилежного катета до прилеглого, будемо мати:

Читати повністю