Попадання точки в заштриховану область: Приклад 3

В даному параграфі продовжимо цикл розв'язоку задач з використанням команди розгалуження, а якщо бути більш точним, то задач на попадання точки в заштриховану область. Для цього, припустимо, що в декартовій системі координат міститься два кола. Перше з них радіуса десять з центром в початку координат і друге — радіуса пять з центром в точці .

Ілюстрація графічної області

Необхідно написати програму, що визначає, чи потрапляє точка з заданими координатами  в зафарбовану на малюнку синім кольором область. Результат роботи вивести у вигляді текстового повідомлення.

Читати повністю

Попадання точки в заштриховану область: Приклад 2

В даному параграфі знову-таки буде розглядатись задача на попадання точки в заштриховану область та її реалізація в середовищі програмування Delphi. Отже, нехай в прямокутній системі координат міститься набір наступних геометричних фігур: два кола радіус яких дорівнює десять та пять відповідно і пряма, проведена під кутом до осі абсцис.

Ілюстрація графічної області

Необхідно написати програму, що дозволяє перевірити потрапляння точки з координатами в заштрихованную область, що складається з двох фрагментів.

Читати повністю

Попадання точки в заштриховану область: Приклад 1

Нехай в декартові системі координат, міститься набір наступних геометричних фігур: коло радіус якого дорінює десять; пряма, яка паралельна осі ординат і проходить через точку ; пряма, проведена під кутом до осі абсцис.

Складемо delphi-програму, основним завданням якої буде визначення того, чи попадає задана користувачем точка з координатами в заштриховану область, включаючи її межі.

Ілюстрація графічної області

Для цього запустимо середовище програмування Delphi, створимо новий проект, та на головній формі розмістимо компоненти наступним чином:

Читати повністю

Відстань від точки до прямої на площині

Нехай на площині міститься пряма задана своїм рівнянням у загальному вигляді і деяка точка , що не лежить на даній прямій. Через точку  проведемо перпендикуляр до заданої прямої і позначимо точку їх перетину через . Тоді відстань від точки  до прямої буде дорівнювати відстані між точками  та .

Відстань від точки до прямої

Графічне представлення алгоритму знаходження відстані від точки до прямої

Виведемо формулу для обчислення відстані від точки до прямої. Для цього приведемо рівняння заданої прямої до виду рівняння прямої з кутовим коефіцієнтом:

Читати повністю

Точка перетину двох прямих на площині

Нехай дано дві прямі, задані своїми рівняннями в загальному вигляді і . Знайдемо точку перетину цих прямих.

Графічне представлення алгоритму знаходження точки перетину двох прямих

Так як ця точка належить кожній з двох даних прямих, то її координати повинні задовольняти як рівняння першої, так і рівняння другої прямої. Таким чином, для того щоб знайти координати точки перетину двох прямих, слід розв'язати систему рівнянь виду:

Читати повністю

Рівняння прямої яка проходить через дві задані точки

Нехай задані дві точки та через які проходить пряма і для якої, використовуючи їх координати, необхідно знайти її рівняння. Для цього припустимо, що . Відмітимо, що в такому випадку пряма не паралельна осі ординат. А, як нам уже відомо, рівняння будь-якої прямої яка проходить через точку і не паралельна осі  є рівняння виду:

Так як пряма проходить також і через точку , то координати даної точки повинні задовільняти цьому рівнянню. Підставляючи в рівняння (1), замість поточних координат, координати і , отримаємо . Звідси знаходимо:

Тобто кутовий коефіцієнт прямої дорівнює різниці ординат будь-яких двох її точок, розділеної на різницю абсцис цих точок. Підставивши знайдене значення в рівняння (1), отримаємо рівняння прямої, яка проходить через дві задані точки і :

Читати повністю

Рівняння прямої яка походить через задану точку

Нехай задані точка  і кутовий коефіцієнт , який визначає напрямок прямої лінії, що проходить через цю точку. Поставимо перед собою задачу, використовуючи відомі параметри, знайти рівняння прямої. Для цього, запишемо рівняння прямої з кутовим коефіцієнтом:

Відмітимо, що в даному рівнянні невідомим являється вільний член . Але виходячи з того, що пряма (1) проходить через точку , то координати цієї точки задовільняють рівняння прямої . Звідси отримаємо:

Підставляючи знайдене значення  в рівняння (1), отримаємо , звідки:

Таким чином, ми отримали рівняння прямої, яка проходить через точку  в заданому напрямку . Якщо ж розглядається задача, в якій задана тільки точка , то коефіцієнт  в рівнянні (3) може приймати будь-які значення, тобто рівняння (3) буде рівнянням будь-якої прямої, що проходить через точку  (за винятком прямої , паралельної осі ). Тому рівняння (3) при будь-яких  називається рівнянням пучка прямих, що проходять через точку .

Читати повністю

Наступна сторінка »