Логарифмічне диференціювання

Логарифмічним диференціюванням називається метод диференціювання функцій, при якому спочатку знаходиться логарифм функції, а потім обчислюється похідна від нього. Зазначимо, що такий прийом доцільно застосувати у випадку, коли задана функція містить множення, ділення, піднесення до степеня чи видобування кореня.

Розглянемо даний підхід більш детально. Отже, нехай дана функція . Візьмемо натуральні логарифми від обох її частин. В результаті отримаємо:

Тепер, продиференціюємо цей вираз як складну функцію, маючи на увазі, що  — це функція від :

Виразивши з останньої рівності шукану похідну, остаточно отримаємо:

Зазначимо, що похідна виду (3) називається логарифмічною похідною, а процес її знаходження — логарифмічним диференціюванням.

Читати повністю

Правила диференціювання функцій і таблиця похідних

Знаходження похідних за означенням не проста задача. Тому для відшукання похідних від функцій, які утворені з декількох елементарних функцій використовують правила диференціювання, що формулюється наступним чином:

  1. Похідна постійної величини дорівнює нулю: .
  2. Якщо кожна з функцій , , диференційовна в деякій точці , то диференційовною в цій точці є їх алгебраїчна сума, причому похідна алгебраїчної суми цих функцій дорівнює алгебраїчній сумі їх похідних: .
  3. Якщо функції  і  диференційовні в точці  , то їх добуток диференційовний в цій точці і має місце формула: .

    Зауваження: якщо функція , то , тобто постійна величина виноситься за знак похідної.

  4. Якщо функції  диференційовні в точці , причому , то їх частка також має похідну в цій точці, яка обчислюється за формулою: .

    Зауваження: якщо чисельник дробу постійна величина (функція ), то ; якщо знаменник дробу — постійна величина (функція ), то .

Зазначимо, що на підставі означення похідної та розглянутих вище правил диференціювання складається таблиця похідних основних елементарних функцій:

Читати повністю

Похідна функції. Як знайти похідну функції

Нехай функція ) визначена в деякому околі точки і нехай  — точка цього околу ().

Якщо відношення має границю при , то ця границя називається похідною функції в точці  і позначається . Таким чином,

тобто похідною функції в точці  називається границя відношення (якщо вона існує) приросту функції  в точці  до приросту аргументу, коли приріст аргументу прямує до нуля.

Якщо функція  в точці  має скінченну похідну, то вона називається диференційованою в цій точці.

Ілюстрація до визначення похідної функції в точці

Якщо функція диференційована в кожній точці інтервалу , то , де і  — приріст аргументу та приріст функції відповідно.

Читати повністю