Знаходження максимального по абсолютній величині власного значення матриці степеневий методом в середовищі програмування delphi

Програма знаходить максимальне по модулю власне число для матриці довільної розмірності з заданою точністю використовуючи степеневий методом та дві його модифікації (теоретична частина по данх методах міститься за посиланням знаходження власного значення матриці степеневий метод). Інтерфей розглядуваного delphi-проекту аналогічний проектам, які ми розглядали для розв'язку повної проблеми власних значень (метод Федеєва на delphi, метод Левер'є на delphi та інші), лише з одною відмінністю. В ньому передбачено можливість задати точність обчислень та вибрати модифікацію степеневого методу.

stepenevuj_metod_delphi11

Інтерфейс delphi-проекту "Знаходження максимального по абсолютній величині власного значення матриці степеневий методом"

Для того, щоб знайти максимальне власне значення матриці, необхідно вказати відповідні значення та параметри в панелі задач (розмірність матриці, точність обчислень, модифікація методу), заповнити таблицю значеннями її елементів і натиснути кнопку «Знайти максимальне власне значення матриці».

Читати повністю

Часткова проблема власних значень матриці. Степеневий метод

Нехай маємо деяку матрицю Степеневий метод і нехай її власні значення впорядковані по абсолютній величині наступним чином: Степеневий метод. Тоді, вибравши деякий вектор Степеневий метод, наприклад, вектор, компоненти якого дорівнюють одиниці Степеневий метод, для визначення Степеневий метод можна побудувати наступний ітераційний процес:

Степеневий метод

де Степеневий метод і Степеневий метод — відповідні компоненти векторів Степеневий метод та Степеневий метод. При цьому в якості номера Степеневий метод може використовуватися будь-яке число з діапазону Степеневий метод.

Читати повністю

Розв'язок системи нелінійних рівнянь методом Брауна в середовищі програмування Delphi

Теоритичні відомості по методу Брауна досить повно і ясно викладено за посиланням Розв'язок СНАР методом Брауна, тому опишемо коротко лише його основну ідею, після чого приступимо до розгляду delphi-проекту, який використовуючи алгоритм даного методу знаходить рішення системи двох нелінійних рівнянь. Метод полягає в послідовній лінеаризації кожного з рівнянь нелінійної системи, в результаті чого отримується явний вираз чергової змінної який підставляємо в усі нелінеарізовані рівняння. Даний процес продовжується до тих пір, поки не буде отримано вираз для останньої змінної, в якому вона вже не залежить від інших змінних. Далі здійснюється зворотний хід (як і в методі Гаусса) для отримання шуканих значень всіх змінних.

Отже, після запуску проекту "метод Брауна" на екрані появиться форма наступного вигляду:

Інтерфейс програми, яка використовуючи метод Брауна знаходить розв'язок системи двох нелінійних рівнянь

Інтерфейс програми, яка використовуючи метод Брауна знаходить розв'язок системи двох нелінійних рівнянь

Читати повністю

Метод Зейделя. Розв'язок СНАР методом Зейделя в середовищі Delphi

Алгоритм методу Зейделя при знаходженні розв'язку системи нелінійних рівнянь практично не відрізняється від алгоритму, який ми використовували для випадку системи лінійних рівнянь. Тобто, на першому кроці здійснюється приведення систему до ітераційного вигляду. Після чого, реалізується ітераційний процес обчислення наближень до розв'язку системи, до тих пір, поки не буде досягнуто заданої точності.

Давайте розглянемо delphi-проект, який використовуючи метод Зейделя знаходить розв'язок системи, яка складається з двох нелінійних рівнянь. Також слід відмітити, що збіжність методу Зейделя, залежить від вибору початкового наближення, яке, в нашому випадку, найзручніше визначити графічно. Тобто, необхідно побудувати графік кожного з рівнянь системи і в якості початкового наближення вибрати приблизні координати точки їх перетину. Саме для цього в програмі передбачино кнопку "Побудувати графік" (побудова графіка здійснюється з допомогою компонента TChart).

Читати повністю

Метод Брауна. Розв'язок СНАР методом Брауна

На відміну від покрокової лінеаризації рівнянь нелінійної системи, яка здійснюється в методі Ньютона, Брауном було запропоновано проводити на кожному ітераційному кроці почергову лінеаризацию рівнянь системи, тобто лінеаризувати в системі спочатку перше рівняння, потім друге і т.д. Після чого, послідовно вирішувати одержувані таким чином рівняння. Для простоти викладу розглянемо даний процес для випадку двох нелінійних рівнянь.

Нехай потрібно знайти рішення системи:

Метод Брауна

і припустимо, що на k-й ітерації ми отримали наближення метод Брауна до розв'язку системи (1). Замінимо перше рівняння системи (1) лінійним, отриманим в результаті розкладу функції двох змінних в ряд Тейлора: метод Брауна. Далі, перетворимо дане рівняння до виду, в якому метод Брауна (позначимо через метод Брауна) виражено через метод Брауна. В результаті отримаємо:

Читати повністю

Розв'язок системи нелінійних алгебраїчних рівнянь використовуючи метод Зейделя

Нехай потрібно знайти розв'язок системи нелінійних алгебраїчних рівнянь (СНАР) виду (1), використовуючи при цьому метод Зейделя.

Розв'язок нелінійних системи методом Зейделя

Для застосування даного методу систему (1), аналогічно, як і у методі простої ітерації, за допомогою еквівалентних перетворень необхідно привести до наступного вигляду (один із способів приведення системи (1) до виду (2) можна знайти за посиланням Розв'язок систем нелінійних рівнянь методом ітерації):

metod_zejdelja_snr2

Далі, задавши початкове наближення metod_zejdelja_snr3, реалізується ітераційний процес обчислення наближень до розв'язку системи за наступними формулами:

Читати повністю

Мінімізація функції багатьох змінних використовуючи метод Ньютона (метод Ньютона на Delphi)

Програма призначена для знаходження точки мінімуму функцій декількох змінних, тобто для мінімізації цих функцій. У програмі реалізовано один з методів, який відноситься до методів другого порядку — метод Ньютона. Даний метод при пошуку мінімуму використовує інформацію про функцію та її похідні до другого порядку включно. Детально розглядати теоретичну частину методу Ньютона в даному параграфі не будемо, її можна знайти за посиланням мінімізація функції багатьох змінних використовуючи методом Ньютона. Розглянемо лише delphi-проект, який реалізує алгоритм даного методу.

Програма на вході приймає функцію, для якої необхідно знайти мінімальне значення, список змінних, від яких залежить функція та початкове наближення. Тобто, якщо нам необхідно мінімізувати функцію Мінімізація функції методом Ньютона на Delphi, нам необхідно у відповідні поля головної форми проекту ввести наступні дані:

  1. У поле «Функція» — X*X+Y*Y-16.
  2. У поле «Список змінних» — X;Y.
  3. У поле «Початкове значення» — 0;0.

Після того, як всі поля заповнено, головна форма набуде наступного вигляду:

Читати повністю

Наступна сторінка »