Площа круга та кругового сектора

Нагадаємо, що кругом називається частина площини, обмежена колом. Тобто круг радіуса з центром містить точку  і всі точки площини, що знаходяться від даної точки на відстані, що не більша за .

Знаходження площі круга з допомогою багатокутників

Виведемо формулу, яка дозволить знайти площу круга радіус якого дорівнює . Для цього розглянемо правильний -кутник , вписаний в коло, що обмежує круг. Очевидно, площа даного кола більша площі багатокутника , так як він цілком міститься в даному колі. З іншого боку, площа кола, вписаного в багатокутник, менша , так як це коло цілком міститься в даному багатокутнику. Отже:

Будемо тепер необмежено збільшувати число сторін -кутника. Зазначимо, що в такому випадку збільшуватиметься і радіус  вписаного в багатокутник кола і при , величина буде як завгодно мало відрізнятися від , а отже, наближатиметься до одиниці, тому . Іншими словами, при необмеженому збільшенні числа сторін багатокутника, вписане в нього коло збігатиметься до описаного кола, тому при . Звідси і з нерівності (1) випливає, що при .

Читати повністю