Формули для обчислення периметра та площі паралелограма

Периметр паралелограма, як і будь-якого багатокутника, дорівнює сумі довжин кожної з його сторін. Наприклад, периметр зображеного нижче паралелограма дорівнює сумі довжин сторін і .

Периметр паралелограма

Периметр паралелограма дорівнює сумі кожної з його сторін

Проте, скориставшись однійє з властивостей паралелограма, а саме властивістю яка свідчить про те, що протилежні його сторони рівні, приходимо до висновку, що для того, щоб знайти периметр паралелограма, достатньо суму довжин його суміжних сторін помножити на два, тобто , де  — периметр паралелограма .

Зауваження: якщо позначити довжини суміжних сторін паралелограма буквами та відповідно, то знайти периметр паралелограма, можна скориставшись наступною формулою: .

Читати повністю

Паралелограм. Означення та властивості паралелограма

Паралелограмом називають чотирикутник, у якого кожні дві протилежні сторони паралельні (окремими випадками паралелограма є прямокутник, квадрат і ромб).

Зауваження: якщо діагоналі паралелограма рівні, то він є прямокутником; якщо діагоналі паралелограма перпендикулярні між собою, то цей паралелограм є ромбом; якщо діагоналі паралелограма рівні та перпендикулярні між собою, то цей паралелограм є квадратом (тобто квадрат об'єднує ознаки прямокутника та ромба).

Висотою паралелограма називають перпендикуляр, опущений з будь-якої точки прямої, яка містить сторону паралелограма, на пряму, що містить протилежну сторону. На рисунку, що міститься нижче, кожен із відрізків є висотою паралелограма . При цьому, кажуть що  висоти проведено до сторін  і , а висоти  — до сторін  і  відповідно.

Зображення паралелограма та його висоти

Розглянемо деякі властивості паралелограма.

Читати повністю