Знаходження оберненої матриці використовуючи метод розбиття на клітини

Іноді буває доцільно, при знаходженні оберненої матриці, попередньо розбити її на клітини. Розглянемо даний процес більш детально. Для цього, на першому кроці, розіб'ємо матрицю  порядку  на чотири клітини, використовуючи для цього наступну схему:

obernena_matrrozb_na_klitku7

де в дужках вказані порядки відповідних клітин, причому . Після цього, обернену матрицю до заданої будемо шукати у вигляді матриці, яка також складається з чотирьох клітин. Тобто:

obernena_matrrozb_na_klitku8

Скориставшись означенням оберненої матриці, а саме , перемножимо матриці (1) та (2). В результаті отримаємо чотири матричних рівняння:

Читати повністю

Означення матриці. Основні операції над матрицями

Матрицею Матриці. Дії над матрицями розмірності matrix2 називається таблиця чисел, яка складається з matrix4 рядків та matrix5 стовпців.

matrix6

Числа, що складають матрицю, називаються її елементами і нумеруються двома індексами, які вказують на номер рядка та стовпця на перетині яких розташований даний елемент. Тобто, елемент matrix7міститься в matrix8-му рядку та matrix9-му стовпці матриці Матриці. Дії над матрицями.

Наприклад, для матриці matrix10, розмірності matrix11, елемент matrix12 а елемент matrix13.

Читати повністю

Розв'язок СЛАР методом Жордана-Гаусса в середовищі програмування Delphi

Програма знаходить рішення системи лінійних алгебраїчних рівнянь довільній розмірності методом Жордана-Гаусса. В основу алгоритму даного методу покладено ідею приведення матриці коефіцієнтів до діагонального вигляду. Слід зазначити, що перетворення, які здійснюються для приведення матриці коефіцієнтів до такого вигляду, необхідно проводити і для елементів стовпця вільних членів. В результаті виконання даного алгоритму, елементи стовпця вільних членів міститимуть значення, які являтимуться шуканим розв'язком системи. Більш детальну інформацію про метод Жордана-Гаусса можна знайти за посиланням розв'язок СЛАР методом Жордана-Гаусса.

Після запуску програми перед Вами з'явитися робоче вікно програми, в якому, на сам перед, необхідно вказа розмірність системи (оскільки система розміру n на n потрібно ввести тільки одне число).

Метод Жордана-Гаусса на Delphi

Інтерфейс програми, яка для розв'язку СЛАР використовує алгоритм методу Жордана-Гаусса

Далі, заповнюємо матрицю коефіцієнтів та стовпець вільних членів (зображені у вигляді компонентів TStringGrid) відповідними даними, вибираємо модифікацію методу Жордана-Гагусса, після чого натискаємо кнопку "Розв'язати систему рівнянь".

Читати повністю

Метод Жордана-Гаусса. Розв'язок систем лінійних рівнянь методом Жордана-Гаусса

Метод Жордана-Гаусса являється однією з модифікацій методу Гаусса і знаходження розв'язку системи лінійних алгебраїчних рівнянь з допомогою даного методу зводиться до перетворення вихідної системи до системи з одиничною або діагональною матрицею. Тобто основна відмінність між методом Гаусса і методом Жордана-Гаусса полягає в тому, що при реалізації останнього, елементи матриці обнулюються як під, так і над головною діагоналлю, а значення діагональних елементів стають рівними одиниці. В результаті даного перетворення елементи вектора вільних членів являтимуться шуканим розв'язком системи.

Розглянемо даний метод більш детально. Для цього запишемо систему лінійних рівнянь наступного вигляду:

метод Жордана-Гаусса

Обчислювальна схема методу Жордана-Гаусса складається з Метод Жордана-Гаусса циклів, в кожному з яких послідовно з допомогою Метод Жордана-Гаусса-го рядка виключаються елементи при невідомій Метод Жордана-Гаусса в кожному рядку матриці коефіцієнтів, крім Метод Жордана-Гаусса-го. Дана схема реалізується з допомогою наступних кроків:

Читати повністю