Пошук точок сполучення в неорієнтованому графі засобами delphi

Delphi-програма, головне вікно якої зображено на рисунку, що міститься нижче, використовуючи алгоритм, що базується на обході графа в глибину, знаходить всі точки сполучення заданого зв'язного неорієнтованого графа. Нагадаємо, що точкою сполучення графа такого типу називається вершина при видаленні якої він перестає бути зв'язним.

На даному сайті нами вже було розглянуто задачу дещо подібного характеру, а якщо бути більш точним то задачу на відшукання мостів зв'язного неорієнтованого графа і, зокрема, delphi-проект призначений для її розв'язку (пошук мостів на delphi). Відмітимо, що задачі такого типу становлять інтерес, наприклад, для аналізу надійності комп'ютерних мереж. Де задача про пошук мостів відповідає за знаходження сполучних ліній, при поломці однієї з яких мережа перестає бути зв'язною, а задача про пошук точок сполучення дозволяє вирішити питання про виявлення комп'ютерів, при поломці одного з яких мережа перестає бути зв'язною.

tochka_spoluchennja_grafa_delphi11

Головне вікно проекту "Пошук точок сполучення в зв'язному неорієнтованому графі"

Як видно з малюнку, головне вікно delphi-проекту складається з наступних елементів: панель інструментів (компонент типу TPanel — служить контейнером для чотирьох кнопок «Додати вершину», «Додати ребро», «Видалити граф», «Знайти точки сполучення»), графічний редактор (компонент типу TImage) та область виводу результатів (компонент типу TMemo). Перші два з них призначені для побудови та графічного представлення зв'язного неорієнтованого графа і третій — виводить номера вершин, які для заданого графа являються точками сполучення.

Читати повністю

Знаходження точок сполучення зв'язного неорієнтованого графа та перевырка його на двозв'язність

Точкою сполучення неорієнтованого графа називається вершина, при видаленні якої, разом з усіма суміжними її ребрами, збільшується кількість компонент зв'язності графа. Відповідно, для зв'язного графа точкою сполучення називається вершина, при видаленні якої граф перестає бути зв'язним. Наприклад, точками сполучення для графа, який зображено на малюнку що міститься нижче, є вершини і . Якщо видалити вершину , то граф, який складається з однієї компоненти зв'язності, розбивається на два підграфи і . Якщо видалити вершину , то граф розбивається на підграфи і . Але якщо видалити будь-яку іншу його вершину, то в цьому випадку, розбити зв'язну компоненту з якої складається даний граф на кілька частин, не вдасться. Зв'язний граф, який не має точок сполучення, називається двозв'язним.

Точки сполучення неорієнтованого графа

Графічне представлення алгоритму пошуку точок сполучення в неорієнтованому графі

Метод знаходження точок сполучення часто застосовується для вирішення важливої проблеми, що стосується -зв'язності графа. Граф називається -зв'язним, якщо видалення будь-яких вершин не приведе до його розчленування. Зокрема, граф має зв'язність рівну два або вище тоді і тільки тоді, коли він не має точок сполучення, тобто тільки тоді, коли він є двозв'язним. Чим вища зв'язність графа, тим більше можна видалити вершин з цього графа, не порушуючи його цілісність, тобто не розбиваючи його на окремі компоненти.

Читати повністю

Пошук Гамільтоновго циклу в неорієнтованому графі

Гамільтоновим циклом (Гамільтоновим ланцюгом) неорієнтованого графа називають простий цикл, що містить всі його вершини в точності по одному разу. Зовні визначення Гамільтонового циклу схоже на визначення Ейлерового циклу. Однак є кардинальна відмінність в складності розв'язку відповідних задач на розпізнавання і побудову. Тобто, якщо при розгляді Ейлерового циклу ми бачили, що для нього існує досить простий критерій перевірки його існування і ефективний алгоритм його побудови. То для Гамільтонових же циклів невідомо ніяких необхідних і достатніх умов їх існування, а всі відомі алгоритми вимагають, для деяких графів, перебору великого числа варіантів.

Читати повністю

Пошук Ейлерового циклу використовуючи алгоритм Флері в середовищі програмування delphi

Програму розроблено в середовищі програмування Delphi, основним призначенням якої є побудова Ейлерового циклу в Ейлеровому графі. В якості методу, використовується алгоритм Флері.

Граф задається у вигляді вершин (пронумеровані точки) та ребер (прямі лінії що їх з'єднюють). Для цього в програмі передбачено графічний редактор (компонент типу TImage) та дві кнопки типу TSpeedButton («Додати вершину» і «Додати ребро»). Підготовка проекту до нового прикладу здійснюється з допомогою кнопки «Видалити граф» (компонент типу TButton). При натисканні на кнопку «Побудувати Ейлерів цикл» (також компонент типу TButton) власне і запускається алгоритм Флері пошуку Ейлерового циклу.

Вихідні дані програми — послідовність вершин Ейлерового циклу та його представлення у графічному редакторі.

Читати повністю

Побудова Ейлерового циклу в неорієнтованому графі використовуючи алгоритм Флері

Перш ніж приступити до розгляду чергового алгоритму рішення задачі пошуку Ейлерового циклу нагадаємо собі означення та необхідну умову його існування в неорієнтованому графі. Отже, Ейлеровим циклом називається замкнутий маршрут, в якому кожне ребро графа зустрічається точно один раз. Згідно з твердженням, яке ми розглядали в минулому параграфі, для існування такого маршруту в зв'язному графові необхідно і достатньо, щоб степені всіх його вершин були парними. Відмітимо, що в даному параграфі нами вже було вивчено один з можливих вірівнтів знаходження Ейлерового циклу, який базується на використанні алгоритму обходу графа в глибину. Сьогодні розглянемо дещо простішу та наочнішу процедуру відому під назвою алгоритм Флері.

Читати повністю

Пошук мостів та компонент реберної двозв'язності в неорієнтованому графі

Мостом неорієнтованого графа називається ребро, при видаленні якого збільшується кількість компонент зв'язності графа. Відповідно, для зв'язного графа мостом називається ребро, при видаленні якого граф перестає бути зв'язним. При видаленні всіх мостів граф розпадається на компоненти зв'язності, які називаються компонентами реберної двозв'язності.

Між будь-якими двома вершинами однієї компоненти реберної двозв'язності існує, принаймні, два шляхи, що не перетинаються по ребрах. Справедливе і зворотне твердження: будь-які дві вершіні, між якими існують два шляхи, що не перетинаються по ребрах, належать одній компоненті реберної двозв'язності.

Між двома компонентами реберної двозв'язності не може бути більше одного ребра — в іншому випадку, вони утворюватимуть одну компоненту реберної двозв'язності. Якщо дві різні компоненти реберної двозв'язності з'єднані ребром, то це ребро — міст.

Читати повністю

Пошук Ейлерового циклу в неорієнтованому графі

Ейлеровим циклом (також відомий як Ейлерів ланцюг) називається замкнутий маршрут, в якому кожне ребро графа зустрічається точно один раз. Для існування такого маршруту в зв'язному неорієнтованому графі необхідно і достатньо, щоб степінь для всіх його вершин була парною. Сьогодні, розглянемо алгоритм, основна ідея якого збігається з алгоритмом обходу графа в глибину, та з його допомогою, для деякого неорієнтований граф , знайдемо Ейлерів цикл. Для цього, припустимо, що вимога зв'язності і парності степенів для нього виконується. Відмітимо, що в такому випадку граф є, принаймі, двозв'язним а отже, містить цикл.

poshuk_ejlerovogo_shljahu_v_grafi18

Графічне представлення алгоритму пошуку Ейлерового циклу

Отже, для побудови Ейлерового циклу довільно виберемо одну з вершин графа , наприклад вершину . На наступному кроці, виберемо будь-яке з інцидентних даній вершині ребер, наприклад , і з його допомогою перейдемо у відповідну суміжну вершину. Ребро  після виконання цих дій, вважатиметься пройденим. Після цього, повторюємо цю операцію, щоразу обираючи нове ребро, поки не опинимося в вихідній вершині  і не замкнемо цикл.

Читати повністю

Наступна сторінка »