Програмна реалізація методу Крилова на Delphi для знаходження власних значень матриці

Процес відшукання власних значень матриці при використанні методу Крилова, як і у методі Данилевського, зводиться до визначення коефіцієнтів характеристичного многочлена і в подальшому визначення його коренів. Для цього, згідно алгоритму, необхідно знайти розв'язок системи лінійних рівнянь, який і міститиме шукані значення коефіцієнтів. Після того, як коефіцієнти відомі, необхідно знайти корені нелінійного рівняння (характеристичного многочлена) і таким чином визначити шукані власні значення матриці.

Метод Крилова на Delphi

Інтерфейс програми, яка використовуючи алгоритм методу Крилова знаходить власні значення матриці

Відмітимо, що програма для знаходження розв'язоку системи лінійних рівнянь використовує метод Гаусса, а для розв'язку нелінійного рівняння — метод хорд.

Читати повністю

Знаходження власних значень матриці за методом Крилова

Розглянемо метод призначений для знаходження власних значень матриці, алгоритм якого дещо відрізняється від методу Данилевського. Нехай Метод Крилова характеристичний многочлен матриці Метод Крилова. Виходячи з того, що всяка матриця перетворює в нуль свій характеристичний многочлен, будемо мати Метод Крилова.

Візьмемо тепер довільний ненульовий вектор Метод Крилова, розмірність якого співпадає з розмірністю матриці Метод Крилова і помножимо обидві частини рівності (1) з правої сторони на даний вектор, отримаємо: Метод Крилова.

Поклавши Метод Крилова рівність (2) можна переписати в наступному вигляді: Метод Крилова, або

Метод Крилова

Читати повністю

Знаходження власних значень матриці за методом Данилевського

Суть методу Данилевського полягає у приведенні характеристичного визначника матриці до такзваної нормальної форми Фробеніуса:

Метод Данилевського

і розклад його, в подальшому, по елементах першого рядка. В результаті отримаємо характеристичний многочлен степені Метод Данилевського, коефіцієнтами при невідомих якого є елементи першого рядка матриці Фробеніуса:

Метод Данилевського

Очевидно, що рівняння (2) має Метод Данилевського коренів Метод Данилевського, які можна знайти використовуючи будь-який з методів призначених для знаходження розв'язку нелінійного рівняння  (метод хордметод дотичнихметод простої ітерації та інші).

Читати повністю