Знаходження розв'язку диференціального рівняня методом Рунге-Кутта-Мерсона в середовищі програмування Delphi

Програми написані на мові Borland Delphi і дозволяє вирішувати диференціальні рівняння першого порядку точності, використовуючи для цього метод Рунге-Кутта-Мерсона. Перевагою даного методу є можливість оцінити похибку на кожному кроці інтегрування і в залежності від цього зменшити чи збільшити даний крок. Така можливість дає змогу досягнути заданої точності розв'язку та значно скоротити час рішення диференціального рівняння.

Суть роботи програми доволі проста, за вхідними даними (інтервал інтегрування і крок h) формується масив X[i], і такої ж розмірності масив Y[i], значення елементів якого заповнюються за алгоритмом методу Рунге-Кутта-Мерсона. Також відмітимо, що при роботі з програмою слід враховувати, що точність результату значною мірою залежить від величини кроку інтегрування, тобто чим менший крок h тим більша точність результуючих даних.

Результатом роботи програми є вивід послідовності точок (масив X[i]) та значень функції в них (масив Y[i]), а також побудова відповідного графіка в компоненті TChart.

Читати повністю

Метод Рунге-Кутта-Мерсона. Розв'язування звичайних диференціальних рівнянь методом Рунге-Кутта-Мерсона

Метод Рунге-Кутта-Мерсона, являється оденійєю з модифікацій методу Рунге-Кутта четвертого порядку точності і відрізняється від нього можливістю оцінювати похибку на кожному кроці і в залежності від цього приймати рішення про зміну кроку інтегрування і таким чином значно скоротити час розв'язку диференціального рівняння. Для того, щоб розглянути даний алгоритм більш детально запишемо диференціальне рівняння виду:

Метод Рунге-Кутта-Мерсона

з початковою умовою Метод Рунге-Кутта-Мерсона. Далі, задавши початковий крок інтегрування Метод Рунге-Кутта-Мерсона та точність Метод Рунге-Кутта-Мерсона, на кожному кроці обчислюємо коефіцієнти:

Метод Рунге-Кутта-Мерсона

після чого послідовні значення Метод Рунге-Кутта-Мерсона шуканої функції Метод Рунге-Кутта-Мерсона визначаються за наступною формулою:

Читати повністю