Наближене обчислення квадратних коренів

З уроків алгебри ми знаємо, що квадратним коренем із заданого числа називають таке число, квадрат якого дорівнює заданому числу. Наприклад, числа -5 і 5 є коренем з 25. Арифметичним квадратним коренем із заданого невід'ємного числа називають таке невід'ємне число, квадрат якого дорівнює заданому числу. Для нашого прикладу це буде число 5. Процес знаходження арифметичного квадратного кореня низивається визначенням або добуванням квадратного кореня.

Назва «корінь» і позначення кореня виникли ще в давнину. Так, в Індії його називали «мула» — корінь (дерева), початок, основа; араби — «джузр» — корінь, основа квадрата. В Європі використовували латинський аналог даного слова. Так з'явилася назва radix (по-латині «корінь»), звідси — радикал. Спочатку позначення кореня скоротили до , потім до букви . Вперше таке позначення використовував німецький математик Томас Рудольф. Далі буква  видозмінилася в знак . В подальшому, завдяки Рене Декарту, з'явився сучасний знак .

В математиці існує велика кількість методів для усного та письмового визначення квадратних коренів із чисела. Розглянемо декілька з них, і для початку зупинемося на способі що полягає у застосуванні таблиці квадратів двозначних чисел. Зазначимо, що з цим способом ми познайомилися ще на шкільних уроках математики. Спосіб дуже простий в застосуванні і дає миттєвий результат для квадратного кореня з будь-яких цілих чисел від 1 до 100 з точністю до десятих.

Читати повністю