Мітки: коефіцієнти многочлена

Розв’язок алгебраїчних рівнянь методом послідовних наближень з використанням схеми Горнера

Для знаходження розв’язку алгебраїчних рівнянь степінь яких перевищує два можна також застосувати метод послідовних наближень з використанням схеми Горнера для ділення лівої частини рівняння на , де – дійсний корінь рівняння. У методі послідовних наближень, що застосовуються при вирішенні рівнянь такого типу, відшукується послідовність чисел , яка збігається до числа , яке є коренем рівняння. Ми будемо вважати хорошим наближенням до кореня , якщо залишок від ділення лівої частини рівняння на досить малий. Розглянемо даний процес більш детально. Для цього в рівнянні

відбираємо три останніх члена і знаходимо розв’язок отриманого квадратного рівняння . Якщо корені цього рівняння дійсні, то перерходимо до рішення рівняння , після чого, за перше наближення кореня рівняння (1) приймаємо розв’язок даного рівняння, тобто:

Читати далі

Схема ділення многочлена на квадратний тричлен

В темі Обчислення значення полінома використовуючи схему Горнера ми розглядали, яким чином використовуючи дану схему здійснювати ділення многочлена на двочлен . Покажемо тепер зручну схему для поділу даного многочлена на тричлен виду . Нехай:

Коефіцієнти , які містяться в правій частині рівності (2), знаходять за схемою аналогічною схемі Горнера. Тобто, розкривши дужки і зробивши приведення подібних членів,  прирівнюють коефіцієнти при однакових степенях у лівій і правій частинах. В результаті будемо мати:

Читати далі

Обчислення значення полінома використовуючи схему Горнера

Нехай дано многочлен shema_gornera1-ї степені:

shema_gornera2

коефіцієнтами якого являються дійсні числа. І примустимо, що нам необхідно обчислити значення даного многочлена в точці :

Найпростіший спосіб обчислення числа  полягає в тому, щоб послідовно піднести shema_gornera171 до другої, третьої і так далі, аж до shema_gornera1-ї степені. Після цього кожне отримане число shema_gornera28 помножити на відповідний коефіцієнт і все просумувати. При цьому нам необхідно зробити shema_gornera1 операцій додавання і -ну операцію множення.

Читати далі

Відшукання власних значень матриці використовуючи метод Федєєва в середовищі програмування Delphi

Програма призначена для відшукання власних значень матриці використовуючи метод Федєєва. Даний метод являється модифікацією методу Левер’є і за рахунок певних спрощень при обчисленні коефіцієнтів характеристичного многочлена, вважається більш ефективним. Також слід відмітити, що  з допомогою методу Федєєва можна також визначити власні вектори та знайти обернену матрицю до заданої.

На вході програма приймає квадратну матрицю розмірності N×N. Після чого, використовуючи алгоритм методу Федєєва, відшукує коефіцієнти характеристичного многочлена і в подальшому, з допомогою методу хорд, знаходить корені характеристичного рівняння. Отриманий розв’язок і являтиметься шуканими власними значеннями заданої матриці.

Читати далі

Програмна реалізація алгоритму методу Левер’є для знаходження власних значень матриці

Створений delphi-проект, в залежності від величин N (кількість рядків та стовпців), створює матрицю розміром N×N і призначена для знаходження власних значень для даної матриці (діапазон розмірності матриці змінюється від 2 до 5). В якості методу програма викристовує метод Левер’є. Алгоритм розкриття вікового визначника з допомогою даного методу доволі простий: в першу чергу здійснюється відшукання матриць Ak – степені матриці А і в подальшому знаходженні суми їх діагональних елементів (більш детальна інформація про даний методу містиься за посиланням Знаходження власних значень матриці за методом Левер’є).

Запустивши розглядуваний проект на виконання бачимо, що головне вікно програми ділиться на дві частини: робочої області (складається з поля “Розмірність матриці”, таблиці StringGrid в комірках якої відображаються елементи матриці і кнопки “Знайти власні значення матриці“) та поля виводу результатів (компонент Memo).

Читати далі

Знаходження власних значень матриці використовуючи метод Фадєєва

Метод Фадєєва також відноситься до точних чисельних методів призначених для відшукання власних значень матриці і являється певною модифікацією методу Левер’є. Даний метод вважається більш ефективним, тому що крім спрощень при обчисленні коефіцієнтів характеристичного полінома він дозволяє визначити власні вектори та обернену матрицю до заданої.

Основна ідея методу Фадєєва полягає в тому, що замість послідовності Метод Федєєва, яку ми відшукували використовуючи алгоритм методу Левер’є, обчислюють послідовність Метод Федєєва, побудовану за наступними формулами:

Метод Фадєєва

де Метод Фадєєва – одинична матриця того ж самого порядку, що і матриця Метод Фадєєва; Метод Фадєєва сліди матриць Метод Федєєва відповідно.

Читати далі

Знаходження власних значень матриці використовуючи метод Левер’є

Процес знаходження власних значень за методом Левер’є ділиться на два етапи: розкриття характеристичного многочлена та знаходження його коренів. Розглянемо дані етапи більш детально. Для цього, розглянемо матрицю metod_laverre2, для якої запишемо характеристичний многочлен у наступному вигляді:

metod_laverre14

де Метод Леверр'є корені даного многочлена. Розкладемо многочлен (1) на лінійні множники. В результаті отримаємо:

metod_laverre15

Перемноживши вирази, які містяться в правій частині (2) та звівши подібні члени, після чого прирівнявши їх з відповідними коефіцієнтами з (1), отримаємо формули, які виражають коефіцієнти характеристичного мнгочлена через його корені:

metod_laverre31

де metod_laverre17 – елементарні симетричні функції коренів характеристичного многочлена.

Читати далі

Програмна реалізація методу Крилова на Delphi для знаходження власних значень матриці

Процес відшукання власних значень матриці при використанні методу Крилова, як і у методі Данилевського, зводиться до визначення коефіцієнтів характеристичного многочлена і в подальшому визначення його коренів. Для цього, згідно алгоритму, необхідно знайти розв’язок системи лінійних рівнянь, який і міститиме шукані значення коефіцієнтів. Після того, як коефіцієнти відомі, необхідно знайти корені нелінійного рівняння (характеристичного многочлена) і таким чином визначити шукані власні значення матриці.

Метод Крилова на Delphi

Інтерфейс програми, яка використовуючи алгоритм методу Крилова знаходить власні значення матриці

Відмітимо, що програма для знаходження розв’язоку системи лінійних рівнянь використовує метод Гаусса, а для розв’язку нелінійного рівняння – метод хорд.

Читати далі

Знаходження власних значень матриці за методом Крилова

Розглянемо метод призначений для знаходження власних значень матриці, алгоритм якого дещо відрізняється від методу Данилевського. Нехай Метод Крилова характеристичний многочлен матриці Метод Крилова. Виходячи з того, що всяка матриця перетворює в нуль свій характеристичний многочлен, будемо мати Метод Крилова.

Візьмемо тепер довільний ненульовий вектор Метод Крилова, розмірність якого співпадає з розмірністю матриці Метод Крилова і помножимо обидві частини рівності (1) з правої сторони на даний вектор, отримаємо: Метод Крилова.

Поклавши Метод Крилова рівність (2) можна переписати в наступному вигляді: Метод Крилова, або

Метод Крилова

Читати далі

Знаходження власних значень матриці за методом Данилевського в середовищі програмування Delphi

Використання методу Данилевського, при знаходженні власних значень, зводиться до приведення матриці, з допомогою певних перетворень подібності, до такзваної форми Фробеніуса. Результатом даного перетворення буде  матриця, перший рядок якої містить коефіцієнти характеристичного многочлена вхідної матриці. Знайшовши корені даного многочлена, отримуємо шукані власні значення.

Розглянемо delphi-програму, яка на вході приймає матрицю та її розмірність і використовуючи вище розглянутий підхід, знаходить для даної матриці власні значення. Відмітимо, що корені характеристичного многочлена відшукуються за методом хорд.

Інтерфейс програми, яка використовуючи алгоритм методу Данилевського знаходить власні значення матриці

Інтерфейс програми, яка використовуючи алгоритм методу Данилевського знаходить власні значення матриці

Читати далі