Розв'язок алгебраїчних рівнянь методом послідовних наближень з використанням схеми Горнера

Для знаходження розв'язку алгебраїчних рівнянь степінь яких перевищує два можна також застосувати метод послідовних наближень з використанням схеми Горнера для ділення лівої частини рівняння на , де  — дійсний корінь рівняння. У методі послідовних наближень, що застосовуються при вирішенні рівнянь такого типу, відшукується послідовність чисел , яка збігається до числа , яке є коренем рівняння. Ми будемо вважати хорошим наближенням до кореня , якщо залишок від ділення лівої частини рівняння на досить малий. Розглянемо даний процес більш детально. Для цього в рівнянні

відбираємо три останніх члена і знаходимо розв'язок отриманого квадратного рівняння . Якщо корені цього рівняння дійсні, то перерходимо до рішення рівняння , після чого, за перше наближення кореня рівняння (1) приймаємо розв'язок даного рівняння, тобто:

Читати повністю

Схема ділення многочлена на квадратний тричлен

В темі Обчислення значення полінома використовуючи схему Горнера ми розглядали, яким чином використовуючи дану схему здійснювати ділення многочлена на двочлен . Покажемо тепер зручну схему для поділу даного многочлена на тричлен виду . Нехай:

Коефіцієнти , які містяться в правій частині рівності (2), знаходять за схемою аналогічною схемі Горнера. Тобто, розкривши дужки і зробивши приведення подібних членів,  прирівнюють коефіцієнти при однакових степенях у лівій і правій частинах. В результаті будемо мати:

Читати повністю

Обчислення значення полінома використовуючи схему Горнера

Нехай дано многочлен shema_gornera1-ї степені:

shema_gornera2

коефіцієнтами якого являються дійсні числа. І примустимо, що нам необхідно обчислити значення даного многочлена в точці :

Найпростіший спосіб обчислення числа  полягає в тому, щоб послідовно піднести shema_gornera171 до другої, третьої і так далі, аж до shema_gornera1-ї степені. Після цього кожне отримане число shema_gornera28 помножити на відповідний коефіцієнт і все просумувати. При цьому нам необхідно зробити shema_gornera1 операцій додавання і -ну операцію множення.

Читати повністю

Відшукання власних значень матриці використовуючи метод Федєєва в середовищі програмування Delphi

Програма призначена для відшукання власних значень матриці використовуючи метод Федєєва. Даний метод являється модифікацією методу Левер'є і за рахунок певних спрощень при обчисленні коефіцієнтів характеристичного многочлена, вважається більш ефективним. Також слід відмітити, що  з допомогою методу Федєєва можна також визначити власні вектори та знайти обернену матрицю до заданої.

На вході програма приймає квадратну матрицю розмірності N×N. Після чого, використовуючи алгоритм методу Федєєва, відшукує коефіцієнти характеристичного многочлена і в подальшому, з допомогою методу хорд, знаходить корені характеристичного рівняння. Отриманий розв'язок і являтиметься шуканими власними значеннями заданої матриці.

Читати повністю

Програмна реалізація алгоритму методу Левер'є для знаходження власних значень матриці

Створений delphi-проект, в залежності від величин N (кількість рядків та стовпців), створює матрицю розміром N×N і призначена для знаходження власних значень для даної матриці (діапазон розмірності матриці змінюється від 2 до 5). В якості методу програма викристовує метод Левер'є. Алгоритм розкриття вікового визначника з допомогою даного методу доволі простий: в першу чергу здійснюється відшукання матриць Ak — степені матриці А і в подальшому знаходженні суми їх діагональних елементів (більш детальна інформація про даний методу містиься за посиланням Знаходження власних значень матриці за методом Левер'є).

Запустивши розглядуваний проект на виконання бачимо, що головне вікно програми ділиться на дві частини: робочої області (складається з поля «Розмірність матриці», таблиці StringGrid в комірках якої відображаються елементи матриці і кнопки «Знайти власні значення матриці») та поля виводу результатів (компонент Memo).

Читати повністю

Знаходження власних значень матриці використовуючи метод Фадєєва

Метод Фадєєва також відноситься до точних чисельних методів призначених для відшукання власних значень матриці і являється певною модифікацією методу Левер'є. Даний метод вважається більш ефективним, тому що крім спрощень при обчисленні коефіцієнтів характеристичного полінома він дозволяє визначити власні вектори та обернену матрицю до заданої.

Основна ідея методу Фадєєва полягає в тому, що замість послідовності Метод Федєєва, яку ми відшукували використовуючи алгоритм методу Левер'є, обчислюють послідовність Метод Федєєва, побудовану за наступними формулами:

Метод Фадєєва

де Метод Фадєєва — одинична матриця того ж самого порядку, що і матриця Метод Фадєєва; Метод Фадєєва сліди матриць Метод Федєєва відповідно.

Читати повністю

Знаходження власних значень матриці використовуючи метод Левер'є

Процес знаходження власних значень за методом Левер'є ділиться на два етапи: розкриття характеристичного многочлена та знаходження його коренів. Розглянемо дані етапи більш детально. Для цього, розглянемо матрицю metod_laverre2, для якої запишемо характеристичний многочлен у наступному вигляді:

metod_laverre14

де Метод Леверр'є корені даного многочлена. Розкладемо многочлен (1) на лінійні множники. В результаті отримаємо:

metod_laverre15

Перемноживши вирази, які містяться в правій частині (2) та звівши подібні члени, після чого прирівнявши їх з відповідними коефіцієнтами з (1), отримаємо формули, які виражають коефіцієнти характеристичного мнгочлена через його корені:

metod_laverre31

де metod_laverre17 - елементарні симетричні функції коренів характеристичного многочлена.

Читати повністю

Наступна сторінка »