Скалярний добуток векторів

Під скалярним добутком двох векторів і розуміють число, яке дорівнює добутку довжин цих векторів на косинус кута між ними:

де  — менший кут між векторами та  (). Разом із символом  в літературі часто використовуються й інші позначення, а саме або .

Оскільки проекція вектора на вісь дорівнює його модулю, помноженому на косинус кута нахилу вектора до цієї осі, то маємо:

Тоді, формулу (1) можна переписати у наступному вигляді:

Таким чином, скалярний добуток двох векторів дорівнює довжині одного з них, помноженої на проекцію другого вектора на вісь, напрямок якої визначається першим вектором.

Читати повністю

Проекція вектора на вісь

Нехай задано вектор і вісь L. З кінців вектора опустимо перпендикуляри на вісь (точки та ) і утворимо вектор A1B1.

Проекцією вектора на вісь L називають довжину вектора A1B1, взяту зі знаком «плюс», якщо напрямки вектора A1B1та осі L співпадають, і зі знаком «мінус», якщо вказані напрямки протилежні.

Проекція вектора на вісь

Ілюстрація до визначення проекції вектора на вісь

Проекцію вектора будемо позначати через  або , де - будь-який ненульовий вектор, що задає напрямок проектування.

Читати повністю

Означення вектора. Напрям і модуль вектора

У повсякденній практиці ми маємо справу з величинами двох видів. Одні з цих величин такі, як температура, час, маса, довжина, площа можна визначити одним числовим значенням, інші ж величини, такі, як сила, швидкість, прискорення можна визначити тільки тоді, коли відомо не тільки їх числове значення, а й напрям у просторі. Величини першого виду називають скалярними величинами або скалярами. Величини другого виду називають векторними величинами.

Кожну векторну величину геометрично можна зобразити напрямленим прямолінійним відрізком — вектором, довжина якого дорівнює числовому значенню векторної величини (у вибраному масштабі) і напрям співпадає з напрямом цієї величини.

Нульовий вектор, колінеарні вектори, рівні вектори

Ілюстрація до визначення вектора

Вектор визначають двома точками: перша — це початок, друга — його кінець. При цьому, додатним напрямом вектора вважається напрямок від його початкової до кінцевої точки, наприклад, вектор має початок у точці і кінець у точці (стрілка вказує напрям вектора).

Читати повністю