Похідна неявно заданої функції

Якщо функція  визначена співвідношенням  то  називають неявною функцією від .

Інколи рівняння (1) можна розв'язати відносно , тобто можливий перехід від неявного способу визначення функції до явного , але частіше розв'язання рівняння (1) відносно  неможливе. Слід також відзначити, що терміни «явна функція» і «неявна функція» характеризують не природу функції, а аналітичний спосіб її задання.

Для того, щоб знайти похідну неявно заданої функції, потрібно:

  1. Продиференціювати по  обидві частини рівності (1), при цьому  розглядається як незалежна змінна, а  є функцією від , тобто , а  — це шукана похідна.
  2. Розв'язати отримане рівняння відносно .

Похідна неявно заданої функції — приклади розв'язання:

Приклад 1: знайти похідну від функції , заданої неявно.

Отже, продиференціюємо обидві частини рівняння по , враховуючи при цьому, що  є функцією від : . Розв'язуючи отримане рівняння відносно , отримаємо:

Читати повністю

Диференціювання складної функції

Нехай дана функція  і при цьому . Тоді вихідну функцію можна представити у вигляді . Зазначимо, що функції такого типу називаються складними, а змінна  — проміжним аргументом.

Встановимо правило диференціювання складних функцій. Отже, якщо функції  і  — диференційовані, то складна функція є також диференційованою, причому:

Це правило поширюється на ланцюжок із будь-якого скінченного числа диференційованих функцій: похідна складної функції дорівнює добутку похідних функцій, які її утворюють.

Похідна складної функції — приклади розв'язання:

Приклад 1: знайти похідну функції .

Отже, маємо cкладну степеневу функцію з проміжним аргументом . Тому функцію можна подати у вигляді , де . Тоді, за формулою (1) маємо:

Читати повністю

Правила диференціювання функцій і таблиця похідних

Знаходження похідних за означенням не проста задача. Тому для відшукання похідних від функцій, які утворені з декількох елементарних функцій використовують правила диференціювання, що формулюється наступним чином:

  1. Похідна постійної величини дорівнює нулю: .
  2. Якщо кожна з функцій , , диференційовна в деякій точці , то диференційовною в цій точці є їх алгебраїчна сума, причому похідна алгебраїчної суми цих функцій дорівнює алгебраїчній сумі їх похідних: .
  3. Якщо функції  і  диференційовні в точці  , то їх добуток диференційовний в цій точці і має місце формула: .

    Зауваження: якщо функція , то , тобто постійна величина виноситься за знак похідної.

  4. Якщо функції  диференційовні в точці , причому , то їх частка також має похідну в цій точці, яка обчислюється за формулою: .

    Зауваження: якщо чисельник дробу постійна величина (функція ), то ; якщо знаменник дробу — постійна величина (функція ), то .

Зазначимо, що на підставі означення похідної та розглянутих вище правил диференціювання складається таблиця похідних основних елементарних функцій:

Читати повністю

Похідна функції. Як знайти похідну функції

Нехай функція ) визначена в деякому околі точки і нехай  — точка цього околу ().

Якщо відношення має границю при , то ця границя називається похідною функції в точці  і позначається . Таким чином,

тобто похідною функції в точці  називається границя відношення (якщо вона існує) приросту функції  в точці  до приросту аргументу, коли приріст аргументу прямує до нуля.

Якщо функція  в точці  має скінченну похідну, то вона називається диференційованою в цій точці.

Ілюстрація до визначення похідної функції в точці

Якщо функція диференційована в кожній точці інтервалу , то , де і  — приріст аргументу та приріст функції відповідно.

Читати повністю

Обчислення наближеного значення похідної функції в точці

Похідна — це математичне поняття, яке широко використовується при розв'язку багатьох задач з математики, фізики та інших наук. Зокрема на даному сайті, нами було розглянуто велике коло чисельних методів, які використовуючи поняття похідної, реалізують процес наближеного розв'язку нелінійних рівнянь та відшукання найбільшого чи найменшого значень функції на заданому проміжку (відмітимо, що з даної групи методів, найбільш відомим являється метод Ньютона, який за скінченне число ітерацій, знаходить наближені значення коренів нелінійного рівняння).

Похідна функції в деякій точці характеризує швидкість зміни функції в цій точці. Оцінку швидкості зміни можна отримати, обчисливши відношення зміни функції до відповідної зміни аргументу . У визначенні похідної таке відношення розглядається за умови, що . Перейдемо до більш детального аналізу даного поняття.

Для цього, розглянемо деяку функцію , неперервну в околі точки і нехай  — приріст аргументу в точці . Позначимо через або приріст функції, який дорівнює . Відзначимо тут, що функція неперервна в точці , якщо в цій точці нескінченно малому приросту аргументу відповідає нескінченно малий приріст функції .

Читати повністю