Перевірка орієнтованого графа на ациклічність в середовищі програмування delphi

Програму розроблено в середовищі програмування Delphi, основним призначенням якої є перевірка орієнтованого графа на ациклічність. Нагадаємо, що орієнтований граф називається ациклічним, якщо в ньому відсутні орієнтовані цикли, тобто шляхи, що починається і закінчується в одній і тій же вершині. Відмітимо, що в якості методу, використовується алгоритм обходу в глибину.

Орієнтований граф в програмі задається у вигляді вершин (пронумеровані точки) та орієнтованих ребер (прямі лінії з заданим напрямком). Для цього на головній формі передбачено графічний редактор (компонент типу TImage) та дві кнопки типу TSpeedButton («Додати вершину» і «Додати ребро»). Підготовка проекту до нового прикладу здійснюється з допомогою кнопки «Видалити граф» (компонент типу TButton). При натисканні на кнопку «Перевірити орієнтований граф на наявність циклів» (також компонент типу TButton) власне і запускається алгоритм пошуку циклів в орієнтованому графі.

Вихідні дані програми — побудова дерева обходу в глибину та вивід у компонентів TMemo послідовності вершин орієнтованого циклу, якщо він існує.

Читати повністю

Перевірка орієнтованого графа на наявність циклів

Розглядаючи алгоритм обходу орієнтованого графа в глибину ми звертали увагу на те, що більшість задач, що стосуються графів такого типу, вирішуються з використанням даного алгоритму. Сьогодні розглянемо задачу, яка полягає у визначенні того, чи являється орієнтований граф ациклічним (нагадаємо, що орієнтований граф називають ациклічним, якщо в ньому немає циклів; циклом в орієнтованому графі називається шлях, що веде з вершини в саму себе), і покажемо, яким чином дана задача вирішується з допомогою глибинного обходу графа.

Отже, розглянемо деякий орієнтований граф . Для того, щоб перевірити даний граф на наявність циклів, виконуємо глибинний обхід всіх його вершин. В результаті, отримаємо дерево обходу в глибину. Якщо в побудованому дереві зустрінеться хоча б одне зворотне ребро, то ясно, що орієнтований граф має цикл. Справедливе і обернене твердження, тобто, якщо в орієнтованому графі є цикл, тоді зворотне ребро обов'язково зустрінеться при його обході методом пошуку в глибину. Щоб довести це, припустимо, що орієнтований граф  має цикл.

Перевірка орієнтованого графа на наявність циклів

Нехай при обході даного графа методом пошуку в глибину вершині присвоєно найменшу глибину обходу серед усіх вершин, що становлять цикл. Розглянемо ребро , що належить цьому циклу. Оскільки вершина входить в цикл, то вона повинна бути нащадком вершини  в побудованому дереві обходу в глибину. Тому ребро  не може бути поперечним. Але, виходячи з того, що глибина обходу вершини  більша за глибину обходу вершини  то ребро  також не може бути ні ребром дерева ні прямим ребром. Звідси, ребро  є зворотним, як показано на малюнку, що міститься вище.

Читати повністю