Розв’язок системи двох нелінійних рівнянь методом Ньютона в Delphi

Програма знаходить розв’язок системи з двох нелінійних рівнянь використовуючи метод Ньютона. Використання даного методу зводиться до відшукання розв’язків сукупності систем лінійних алгебраїчних рівнянь і використання їх, в подальшому, для знаходження наступного наближення. Однак для забезпечення збіжності методу Ньютона до шуканого рішення необхідно вдало вибрати початкове наближення. Для цього в програмі передбачено можливість побудови графіка функцій. Скориставшись якою можна визначити приблизні координати точки перетину графіків, та вибрати їх в якості початкового наближення.

Також слід відмітити, що дана програма не являється універсальною, тобто знаходить розв’язок заданої системи нелінійних рівнянь. Проте, якщо винекне необхідність у розв’язку дещо іншої системи, потрібно внести відповідні зміни в програмний код проекту.

Розв'язок систем рівнянь методом Ньютона

Інтерфейс програми, яка реалізує розв'язок системи двох нелінійних рівнянь методом Ньютона

Читати далі

Метод Брауна. Розв’язок СНАР методом Брауна

На відміну від покрокової лінеаризації рівнянь нелінійної системи, яка здійснюється в методі Ньютона, Брауном було запропоновано проводити на кожному ітераційному кроці почергову лінеаризацию рівнянь системи, тобто лінеаризувати в системі спочатку перше рівняння, потім друге і т.д. Після чого, послідовно вирішувати одержувані таким чином рівняння. Для простоти викладу розглянемо даний процес для випадку двох нелінійних рівнянь.

Нехай потрібно знайти рішення системи:

Метод Брауна

і припустимо, що на k-й ітерації ми отримали наближення метод Брауна до розв’язку системи (1). Замінимо перше рівняння системи (1) лінійним, отриманим в результаті розкладу функції двох змінних в ряд Тейлора: метод Брауна. Далі, перетворимо дане рівняння до виду, в якому метод Брауна (позначимо через метод Брауна) виражено через метод Брауна. В результаті отримаємо:

Читати далі

Розв’язок системи нелінійних рівнянь за методом градієнтного спуску

Основним недоліком методу Ньютона чи методу простої ітерації (послідовних наближень) при знаходженні розв’язку системи нелінійних рівнянь (СНР) являється процес вдалого вибору початкового наближення, при якому б ітераційний процес даних методів був збіжний. Для того, щоб уникнути даної проблеми, можна скористоатись будь-яким з оптимізаційних методів мінімізації функції багатьох змінних. Серед методів даної групи розглянемо метод найшвидшого спуску (градієнтний метод). Основна ідея даного методу полягає у зведенні задачі на знаходження розв’язку СНР до відшукання точки мінімуму функції декількох змінних, яка складається з суми квадратів функцій, які містяться в лівій частині рівнянь заданої системи.

Розглянемо даний процес більш детально. Для зручності, візьмемо систему, яка складається з двох нелінійних рівнянь з двома невідомими:

Розв'язок системи нелінійних рівнянь

Далі, як було вище сказано, з функцій gradientnuj_metod_snar2 та порн системи (1) утворюємо нову функцію, яка приймає насутпний вигляд: gradientnuj_metod_snar4. Виходячи з того, що дана функція завжди є додатною, то для неї знайдеться деяка точка Розв'язок системи нелінійних рівнянь, така що gradientnuj_metod_snar6. Отже, якщо тим чи іншим способом вдається отримати точку, яка мінінізує функцію gradientnuj_metod_snar7 і якщо при цьому виявиться, що gradientnuj_metod_snar8, то виходячи з того, що

Читати далі

Мінімізація функції багатьох змінних використовуючи метод Ньютона (метод Ньютона на Delphi)

Програма призначена для знаходження точки мінімуму функцій декількох змінних, тобто для мінімізації цих функцій. У програмі реалізовано один з методів, який відноситься до методів другого порядку – метод Ньютона. Даний метод при пошуку мінімуму використовує інформацію про функцію та її похідні до другого порядку включно. Детально розглядати теоретичну частину методу Ньютона в даному параграфі не будемо, її можна знайти за посиланням мінімізація функції багатьох змінних використовуючи методом Ньютона. Розглянемо лише delphi-проект, який реалізує алгоритм даного методу.

Програма на вході приймає функцію, для якої необхідно знайти мінімальне значення, список змінних, від яких залежить функція та початкове наближення. Тобто, якщо нам необхідно мінімізувати функцію Мінімізація функції методом Ньютона на Delphi, нам необхідно у відповідні поля головної форми проекту ввести наступні дані:

  1. У поле “Функція” – X*X+Y*Y-16.
  2. У поле “Список змінних” – X;Y.
  3. У поле “Початкове значення” – 0;0.

Після того, як всі поля заповнено, головна форма набуде наступного вигляду:

Читати далі

Мінімізація функції двох змінних використовуючи метод Ньютона (метод Ньютона на Delphi)

В даному параграфі розглядається delphi-проект, який використовуючи метод Ньютона знаходить мінімум функції двох змінних. За допомогою даного методу часто вдається за невелику кількість ітерацій отримувати рішення задачі на безумовний мінімум з високою точністю. Однак, при практичному застосуванні метод Ньютона вимагає значних обчислювальних витрат. Це зумовлено тим, що на кожній ітерації доводиться обчислювати градієнт функції (вектор, елементами якого є частинні похідні першого порядку), обчислювати елементи матриці Гессе (для визначення яких необхідно знайти частинні похідні другого порядку від заданої функції) та знаходження оберненої матриці. Більш детальний опис алгоритму мінімізації функції за даним методом можна знайти за посиланням мінімізація функції багатьох змінних використовуючи методом Ньютона.

Результатом роботи програми, є побудова графіка функції використовуючи компонент Plot3D, вивід в статусний рядок (міститься в нижній частині форми) координатів точки мінімуму та обчислення значення функції в цій точці. Також відмітимо, що дана програма не є універсальною, тобто мінімізує лише  задану функцію.

Читати далі

Мінімізація функції методами других порядків (метод Ньютона)

У методах другого порядку при пошуку мінімуму використовують інформацію про функцію та її похідні до другого порядку включно. До цієї групи відносять метод Ньютона, в основі якого лежить квадратична апроксимація, яку отримують шляхом розкладу функції метод Ньютона в ряд Тейлора і відкидаючи члени третього і більш високих порядкув:

Метод Ньютона

де Метод Ньютона – квадратна матриця (матриця Гессе), елементами якої є частинні похідні другого порядку функції optumizacija_metodom_njytona4 в точці Метод Ньютона і які можна обчислити за наступною формулою:

Метод Ньютона

Далі, для визначення напрямку пошуку точки мінімуму за методом Ньютона, замінимо в виразі (1) Метод Ньютона на Метод Ньютона і Метод Ньютона на Метод Ньютона. В результаті отримаємо:

Читати далі

Розв’язок системи нелінійних рівнянь методом итерації (послідовних наближень)

Для розв’язку систем нелінйних рівнянь можна також використовувати і метод простої ітерації (послідовних наближень). Процес збіжність даного методу, на відміну від методу Ньютона, є набагато повільнішим, проте він не вимагає, на кожній ітерації, знаходження розв’язку системи лінійних алгебраїчних рівнянь.

Для простоти, розглянемо систему, яка складається з двох нелінійних рівнянь:

Розв'язок системи рівнянь методом Ітерацій

Згідно методу ітерації, систему (1) потрібно замінити рівносильною їй системою, наступного виду:

metod_iteracii_sust_nelin_rivn2

Припустимо, що розв’язок систем (2) міститься на деякому замкнутому прямокутнику Розв'язок системи рівнянь методом Ітерацій, і при чому він є єдиним (metod_iteracii_sust_nelin_rivn4). Вибравши в якості початкового наближення довільну точку metod_iteracii_sust_nelin_rivn5, і використавши формули:

Читати далі

Метод Ньютона для розв’язку системи двох нелінійних рівнянь

Розглянимо систему, яка складається з двох рівнянь, серед яких є хоча б одне нелінійне:

Метод Ньютона

де Метод Ньютона та Метод Ньютона неперервні та диференційовні функції. Розв’язок даної системи будемо шукати використовуючи метод Ньютона. Для цього, припустимо, що нам вже відоме Метод Ньютона-е наближення Метод Ньютонадля невідомих Метод Ньютона та Метод Ньютона. Більш точне наближення Метод Ньютона, згідно методу Ньютона, можна отримати наступним чином. Покладемо Метод Ньютона і підставимо дані значенняч у систему (1). В результаті отримаємо:

Метод Ньютона

Далі, розклавши функції Метод Ньютона та Метод Ньютона в околі точки з координатами Метод Ньютона у ряд Тейлора, та обмежившись лише лінійними членами відносно Метод Ньютона та Метод Ньютона, будемо мати:

Читати далі

Розв’язок нелінійного рівняння методом дотичних (реалізація в середовищі Delphi)

Метод Ньютона, іменований також методом Ньютона-Рафсона або методом дотичних, являє собою один з найбільш відомих і використовуваних способів рішення нелінійних рівнянь. Основна ідея даного методу полягає в наступному: на першому кроці здається початкове наближення . Далі, в точці , до кривої проводиться дотична, тобто крива замінюється прямою лінією. Після цього, в якості наступного наближення, вибирається точка перетину цієї дотичної з віссю абсцис. Процес побудови дотичних і знаходження точок перетину з віссю абсцис повторюється до тих пір, поки модуль різниці між наступним і попереднім наближенням не стане меншим як завгодно малого наперед заданого числа .

Реалізація методу дотичних засобами Delphi наведена на рисунку що міститься нижче. Як приклад, шукається розв’язок нелінійного рівняння на проміжку , з точністю .

Метод дотичних delphi

Головне вікно delphi-проекту

Виходячи з того, що delphi-програма знаходить розв’язок лише заданої задачі, і алгоритм методу Ньютона, в даному випадку, виконується одноразова, то весь програмний код реалізовано на подію OnCreate() головної форми проекту. Тобто, для щоб знайти шукане рішення, достатньо запустити delphi-програму на виконання.

Читати далі

Знаходження наближеного розв’язку нелінійного алгебраїчного рівняння методом дотичних

Багато проблем в математиці, науці, техніці та бізнесі, в кінцевому підсумку, зводяться до відшукання коренів рівняння. Сумним є той факт, що більшість з цих математичних рівнянь не можуть бути вирішені аналітично. Ви вже знаєте про формулу для розв’язку квадратичних поліноміальних рівнянь. Однак ви можете не знати, що існують формули для рішення рівнянь третьої та четвертої степені. На жаль, ці формули настільки громіздкі, що майже ніколи не використовуються. Для рівнянь більш високої степені таких формул взагалі не існує. Крім того, якщо рівняння містять тригонометричні функції, то, в такому випадку, ще простіше знайти рівняння, які не мають аналітичних рішень. Наприклад, наступне просте рівняння не може бути розв’язане, щоб дати формулу для .

Необхідність розв’язку нелінійних рівнянь, які не можуть бути вирішені аналітично, привела до розвитку чисельних методів. Один з найбільш часто використовуваних чисельних методів називається методом Ньютона або методом Ньютона-Рафсона. Ідея даного методу відносно проста. Припустимо, що розглядається нелінійне рівняння виду Метод дотичних, де Метод дотичних – функція неперевна на відрізку Метод дотичних і має на даному відрізку, відмінні від нуля, похідні першого і другого порядків. Тоді, ідея методу Ньютона полягає в тому, що на кожній ітерації графік функції Метод дотичних замінюється дотичною (звідки інша назва цього методу – метод дотичних) і точку перетину кожної з цих дотичних з віссю абсцис приймають за чергове наближення до шуканого кореня.

Читати далі