Рівняння прямої яка проходить через дві задані точки

Нехай задані дві точки та через які проходить пряма і для якої, використовуючи їх координати, необхідно знайти її рівняння. Для цього припустимо, що . Відмітимо, що в такому випадку пряма не паралельна осі ординат. А, як нам уже відомо, рівняння будь-якої прямої яка проходить через точку і не паралельна осі  є рівняння виду:

Так як пряма проходить також і через точку , то координати даної точки повинні задовільняти цьому рівнянню. Підставляючи в рівняння (1), замість поточних координат, координати і , отримаємо . Звідси знаходимо:

Тобто кутовий коефіцієнт прямої дорівнює різниці ординат будь-яких двох її точок, розділеної на різницю абсцис цих точок. Підставивши знайдене значення в рівняння (1), отримаємо рівняння прямої, яка проходить через дві задані точки і :

Відмітимо, що рівняння (3), доволі часто, записують і у наступному вигляді:

Рівняння прямої яка проходить через дві задані точки — приклад:

Знайти рівняння прямої яка проходить через дві задані точки та .

Рівняння прямої через дві задані точку - приклад

Знаходження рівняння прямої, що проходить через дві задані точки

Для цього, скориставшись формулою, наприклад, (4), отримаємо:

Блок-схема алгоритму побудови рівняння прямої яка проходить через дві задані точки

Матеріал був корисним, поділись в соціальних мережах:

Якщо тобі сподобалась дана тема, залиш свій коментар