Категорія: Наближене рішення систем нелінійних рівнянь

Метод Брауна. Розв’язок СНАР методом Брауна

На відміну від покрокової лінеаризації рівнянь нелінійної системи, яка здійснюється в методі Ньютона, Брауном було запропоновано проводити на кожному ітераційному кроці почергову лінеаризацию рівнянь системи, тобто лінеаризувати в системі спочатку перше рівняння, потім друге і т.д. Після чого, послідовно вирішувати одержувані таким чином рівняння. Для простоти викладу розглянемо даний процес для випадку двох нелінійних рівнянь.

Нехай потрібно знайти рішення системи:

Метод Брауна

і припустимо, що на k-й ітерації ми отримали наближення метод Брауна до розв’язку системи (1). Замінимо перше рівняння системи (1) лінійним, отриманим в результаті розкладу функції двох змінних в ряд Тейлора: метод Брауна. Далі, перетворимо дане рівняння до виду, в якому метод Брауна (позначимо через метод Брауна) виражено через метод Брауна. В результаті отримаємо:

Читати далі

Розв’язок системи нелінійних алгебраїчних рівнянь використовуючи метод Зейделя

Нехай потрібно знайти розв’язок системи нелінійних алгебраїчних рівнянь (СНАР) виду (1), використовуючи при цьому метод Зейделя.

Розв'язок нелінійних системи методом Зейделя

Для застосування даного методу систему (1), аналогічно, як і у методі простої ітерації, за допомогою еквівалентних перетворень необхідно привести до наступного вигляду (один із способів приведення системи (1) до виду (2) можна знайти за посиланням Розв’язок систем нелінійних рівнянь методом ітерації):

metod_zejdelja_snr2

Далі, задавши початкове наближення metod_zejdelja_snr3, реалізується ітераційний процес обчислення наближень до розв’язку системи за наступними формулами:

Читати далі

Розв’язок системи нелінійних рівнянь за методом градієнтного спуску

Основним недоліком методу Ньютона чи методу простої ітерації (послідовних наближень) при знаходженні розв’язку системи нелінійних рівнянь (СНР) являється процес вдалого вибору початкового наближення, при якому б ітераційний процес даних методів був збіжний. Для того, щоб уникнути даної проблеми, можна скористоатись будь-яким з оптимізаційних методів мінімізації функції багатьох змінних. Серед методів даної групи розглянемо метод найшвидшого спуску (градієнтний метод). Основна ідея даного методу полягає у зведенні задачі на знаходження розв’язку СНР до відшукання точки мінімуму функції декількох змінних, яка складається з суми квадратів функцій, які містяться в лівій частині рівнянь заданої системи.

Розглянемо даний процес більш детально. Для зручності, візьмемо систему, яка складається з двох нелінійних рівнянь з двома невідомими:

Розв'язок системи нелінійних рівнянь

Далі, як було вище сказано, з функцій gradientnuj_metod_snar2 та порн системи (1) утворюємо нову функцію, яка приймає насутпний вигляд: gradientnuj_metod_snar4. Виходячи з того, що дана функція завжди є додатною, то для неї знайдеться деяка точка Розв'язок системи нелінійних рівнянь, така що gradientnuj_metod_snar6. Отже, якщо тим чи іншим способом вдається отримати точку, яка мінінізує функцію gradientnuj_metod_snar7 і якщо при цьому виявиться, що gradientnuj_metod_snar8, то виходячи з того, що

Читати далі

Розв’язок системи нелінійних рівнянь методом итерації (послідовних наближень)

Для розв’язку систем нелінйних рівнянь можна також використовувати і метод простої ітерації (послідовних наближень). Процес збіжність даного методу, на відміну від методу Ньютона, є набагато повільнішим, проте він не вимагає, на кожній ітерації, знаходження розв’язку системи лінійних алгебраїчних рівнянь.

Для простоти, розглянемо систему, яка складається з двох нелінійних рівнянь:

Розв'язок системи рівнянь методом Ітерацій

Згідно методу ітерації, систему (1) потрібно замінити рівносильною їй системою, наступного виду:

metod_iteracii_sust_nelin_rivn2

Припустимо, що розв’язок систем (2) міститься на деякому замкнутому прямокутнику Розв'язок системи рівнянь методом Ітерацій, і при чому він є єдиним (metod_iteracii_sust_nelin_rivn4). Вибравши в якості початкового наближення довільну точку metod_iteracii_sust_nelin_rivn5, і використавши формули:

Читати далі

Метод Ньютона для розв’язку системи двох нелінійних рівнянь

Розглянимо систему, яка складається з двох рівнянь, серед яких є хоча б одне нелінійне:

Метод Ньютона

де Метод Ньютона та Метод Ньютона неперервні та диференційовні функції. Розв’язок даної системи будемо шукати використовуючи метод Ньютона. Для цього, припустимо, що нам вже відоме Метод Ньютона-е наближення Метод Ньютонадля невідомих Метод Ньютона та Метод Ньютона. Більш точне наближення Метод Ньютона, згідно методу Ньютона, можна отримати наступним чином. Покладемо Метод Ньютона і підставимо дані значенняч у систему (1). В результаті отримаємо:

Метод Ньютона

Далі, розклавши функції Метод Ньютона та Метод Ньютона в околі точки з координатами Метод Ньютона у ряд Тейлора, та обмежившись лише лінійними членами відносно Метод Ньютона та Метод Ньютона, будемо мати:

Читати далі