Обчислення наближеного значення похідної функції в точці

Похідна — це математичне поняття, яке широко використовується при розв'язку багатьох задач з математики, фізики та інших наук. Зокрема на даному сайті, нами було розглянуто велике коло чисельних методів, які використовуючи поняття похідної, реалізують процес наближеного розв'язку нелінійних рівнянь та відшукання найбільшого чи найменшого значень функції на заданому проміжку (відмітимо, що з даної групи методів, найбільш відомим являється метод Ньютона, який за скінченне число ітерацій, знаходить наближені значення коренів нелінійного рівняння).

Похідна функції в деякій точці характеризує швидкість зміни функції в цій точці. Оцінку швидкості зміни можна отримати, обчисливши відношення зміни функції до відповідної зміни аргументу . У визначенні похідної таке відношення розглядається за умови, що . Перейдемо до більш детального аналізу даного поняття.

Для цього, розглянемо деяку функцію , неперервну в околі точки і нехай  — приріст аргументу в точці . Позначимо через або приріст функції, який дорівнює . Відзначимо тут, що функція неперервна в точці , якщо в цій точці нескінченно малому приросту аргументу відповідає нескінченно малий приріст функції .

Читати повністю

Розв'язок системи двох лінійних рівнянь з двома невідомими методом підстановки

Знаходження розв'язку системи лінійних рівнянь, являється однією з найбільш важливіших задач лінійної алгебри. Відмітимо, що на даному сайті розглядається велика кількість точних та ітераційних чисельних методів (метод Крамера, метод Гаусса, метод простої ітерації та інші), рішення задач такого типу. Сьогодні, доповнимо її ще одним методом, який на відміну від розглянутих, являється менш універсальним, тобто вирішує системи малої розмірності, а саме системи двох лінійних рівнянь з двома невідомими і називається методом підстановки.

Основна суть методу підстановки полягає в тому, що в одному з рівнянь системи (не важливо якому) одна невідома виражається через іншу. Після цього в друге рівняння системи, замість відповідної невідомої, підставляється вираз (отриманий на попередньому кроці), якому відповідає ця невідома. Розглянемо даний процес більш детально. Для цього припустимо, що нам необхідно знайти розв'язок система лінійних рівнянь виду:

Для того щоб розв'язати дану систему методом підстановки будемо слідувати простому алгоритму:

Читати повністю

Знаходження нормального псевдорозв'язку для систем з прямокутною або виродженою матрицею

При розгляді чисельних методів призначених для розв'язку систем лінійних алгебраїчних рівнянь, завжди вважалось, що матриця коефіцієнтів при невідомих системи є квадратною, тобто з однаковою кількістю рядків і стовпців. Якщо, наприклад, кількість рядків (кількість рівнянь в системі) буде менше, ніж кількість стовпців (фактично, кількості невідомих), то система буде невизначеною і всі точні та ітераційні методи рішення лінійних систем, являтимуться неефктивними. Тобто ми не зможемо однозначно визначити всі невідомі.

Але це не єдине обмеження. З векторної алгебри відомо, що система лінійних рівнянь має однозначне рішення тоді і тільки тоді, коли її головний визначник не дорівнює нулю. Що ж робити, коли він (визначник) все-таки дорівнює нулю?

З класичної точки зору, системи такого типу (з прямокутною, або квадратною але виродженою матрицею) розв'язків не мають, але для них вводять поняття узагальненого розв'язку (псевдорозв'язок). Розглянемо дане поняття більш детально.

Читати повністю

Псевдообернена матриця. Обертання прямокутних та вироджених матриць

В попередніх параграфах для квадратної невиродженої матриці розглядалася обернена матриця . Якщо ж матриця  прямокутна або квадратна, але вироджена, то вона немає класичної оберненої матриці. Однак в цьому випадку може бути введено поняття узагальненої оберненої матриці , яка має деякі властивості оберненої та використовується при вирішенні деяких систем лінійних алгебраїчних рівнянь. У разі, коли  — квадратна невироджена матриця, узагальнена обернена матриця збігається з оберненою матрицею .

Узагальненою оберненою (псевдооберненою) матрицею для прямокутної матриці  з розмірами називають єдину матрицю, що задовольняє чотирьом умовам:

де означає перехід до сполученої матриці.

Читати повністю

Знаходження розв'язку однорідної системи лінійних алгебраїчних рівнянь

Розглянемо однорідну систему лінійних алгебраїчних рівнянь:

або у векторно-матричній формі , де

Якщо визначник матриці коефіцієнтів  даної системи відмінний від нуля, то в силу формул Крамера система (1) має нульовий розв'язок (), і причому єдиний.

Якщо ж , то в цьому випадку система (1) має безліч розв'язків, в тому числі і ненульові. З (2) випливає, що якщо  — являється розв'язком системи (2) то , де  — довільна стала, також є розв'язком цієї системи; якщо і  — розв'язок системи (2), то сума  і  — також є розв'язком цієї системи.

Читати повністю

Чисельне інтегрування функції методом Ромберга

Перш ніж приступити до розгляду чергового методу чисельного інтегрування, нагадаємо, що інтеграл від функції чисельно дорівнює площі криволінійної трапеції, обмеженої графіком цієї функції і межами інтегрування . Відмітимо, що розглядувані на даному сайті методи (метод прямокутниківметод трапецій, метод Сімпсона), базуються на процедурі поділу відрізка  на елементарних частин, після чого, площа криволінійної трапеції обчислюється, як сума площ  прямокутників чи трапецеїдних фігур (в залежності від вибраного методу). Проте, результат отриманий згідно даних методів, сильно залежить від величини кроку (), що позначається на точності обчислення визначеного інтеграла особливо в тих випадках, коли функція має немонотонний характер.

Використання екстраполяції Річардсона, при інтегруванні відомими методами, дозволяє значно скоротити машинний час при незмінній точності результату (оскільки уточнення результату інтегрування не потребує додаткових обчислень функції). Застосування наведеної нижче методики до ітераційної формули трапецій складає розглядуваний метод Ромберга.

Далі, розглянемо основну суть екстраполяції Річардсона. Для цього, вибиремо деякий крок  і розрахуємо по формулі трапецій деяке значення інтеграла . Далі, крок  зменшимо удвічі, в результаті чого, отримаємо нове значення . Тоді, згідно з екстраполяцією Річардсона, розраховане значення інтеграла може бути уточнене за формулою:

Читати повністю

Обчислення довжини дуги кривої за допомогою визначеного інтеграла

Сьогодні розглянемо ще одну задачу, яка як і задача обчислення площі плоскої фігури та задача обчислення об'ємів тіл, відноститься до категорії найважливіших геометричних задач, що вирішуються методами інтегрального числення, а саме задачу знаходження довжини дуги кривої.

Для цього, припустимо, що в прямокутній системі координат задано неперервну криву , для якої необхідно знайти довжину дуги , яка розташована в інтервалі між  та .

Апроксимація елемента дуги кривої прямолінійним відрізком

Апроксимація елемента дуги кривої прямолінійним відрізком

Відмітимо, що розв'язок даної задачі почнемо поділом дуги  точками з абсцисами на частин. На наступному кроці поєднаємо дані точки відрізками , довжини яких позначимо через  відповідно. В результаті виконання даного кроку, ми отримали ламану лінію , вписану в дугу . Довжина даної ламаної складається з довжин відрізків , тобто:

Читати повністю

Наступна сторінка »