Межі дійсних коренів многочлена з дійсними коефіцієнтами

Наближене обчислення кореня, будь-якого алгебраїчного рівняння, як правило, розпадається на дві задачі: відокремлення коренів, тобто визначення інтервалів, в кожному з яких міститься тільки один корінь рівняння; уточнення коренів, тобто обчислення його з заданим степенем точності. Прте, перш ніж відокремлювати корені, природно визначити межі області, в якій розташовані всі корені рівняння.

Межі дійсних коренів многочлена

В даному параграфі розглянемо один із способів відшукання цих меж, для випадку, коли алгебраїчне рівняння являється многочленом -ї степені:

Покажемо, спочатку, що для рівняння такого виду, достатньо вміти знаходити лише верхню межу його додатних коренів. Отже, нехай  — верхня межа додатних коренів рівняння (1). Тоді, якщо числа  будуть верхіми межами додатних коренів многочленів відповідно, то буде нижньою межею додатних коренів многочлена (1), а числа і служать нижньою і верхньою межами від'ємних коренів многочлена  відповідно. Таким чином, всі додатні корені  задовольняють нерівність , а від'ємні — нерівність .

Читати повністю

Застосування методу Крилова для знаходження власних векторів матриці

Метод Крилова, як і метод Данилевського, дає можливість достатньо просто знайти власні вектора матриці, якщо коефіцієнти характеристичного полінома та його коріння визначені. Продемонструємо це і для простоти обмежимося випадком, коли характеристичний многочлен  матриці , має різні корені .

Отже, нехай  — вектори, використовувані в методі Крилова для знаходження коефіцієнтів . Розкладаючи вектор за власними векторами матриці отримаємо:

Де  — деякі коефіцієнти.

Звідси, враховуючи, що , отримаємо:

Нехай,  — довільна система многочленів. Тоді, складаючи лінійну комбінацію векторів з коефіцієнтами з (3) та в силу співвідношень (1) і (2), знаходимо:

Читати повністю

Пошук власних векторів матриці методом Данилевського

Розглянутий в параграфі Пошук власних значень матриці метод Данилевського дає можливість визначати не тільки всі власні значення матриці , а і всі її власні вектори, при умові, що відповідні їм власні значення являються відомими. Покажемо, яким чином це реалізується. Отже, нехай  — власне значення матриці , а отже, і власне значення подібної їй матриці Фробеніуса .

Знайдемо власний вектор матриці , який відповідає власному значенню . Для цього, запишемо лінійне рівняння наступного вигляду: . Звідси або у матрично-векторній формі:

Перемноживши матриці, отримаємо систему для визначення координат власного вектора :

Система (3) — однорідна. Рішення її може бути знайдене в такий спосіб. Покладемо . Тоді, починаючи з останнього рівняння, послідовно отримаємо:

Читати повністю

Обчислення наближеного значення похідної функції в точці

Похідна — це математичне поняття, яке широко використовується при розв'язку багатьох задач з математики, фізики та інших наук. Зокрема на даному сайті, нами було розглянуто велике коло чисельних методів, які використовуючи поняття похідної, реалізують процес наближеного розв'язку нелінійних рівнянь та відшукання найбільшого чи найменшого значень функції на заданому проміжку (відмітимо, що з даної групи методів, найбільш відомим являється метод Ньютона, який за скінченне число ітерацій, знаходить наближені значення коренів нелінійного рівняння).

Похідна функції в деякій точці характеризує швидкість зміни функції в цій точці. Оцінку швидкості зміни можна отримати, обчисливши відношення зміни функції до відповідної зміни аргументу . У визначенні похідної таке відношення розглядається за умови, що . Перейдемо до більш детального аналізу даного поняття.

Для цього, розглянемо деяку функцію , неперервну в околі точки і нехай  — приріст аргументу в точці . Позначимо через або приріст функції, який дорівнює . Відзначимо тут, що функція неперервна в точці , якщо в цій точці нескінченно малому приросту аргументу відповідає нескінченно малий приріст функції .

Читати повністю

Знаходження нормального псевдорозв'язку для систем з прямокутною або виродженою матрицею

При розгляді чисельних методів призначених для розв'язку систем лінійних алгебраїчних рівнянь, завжди вважалось, що матриця коефіцієнтів при невідомих системи є квадратною, тобто з однаковою кількістю рядків і стовпців. Якщо, наприклад, кількість рядків (кількість рівнянь в системі) буде менше, ніж кількість стовпців (фактично, кількості невідомих), то система буде невизначеною і всі точні та ітераційні методи рішення лінійних систем, являтимуться неефктивними. Тобто ми не зможемо однозначно визначити всі невідомі.

Але це не єдине обмеження. З векторної алгебри відомо, що система лінійних рівнянь має однозначне рішення тоді і тільки тоді, коли її головний визначник не дорівнює нулю. Що ж робити, коли він (визначник) все-таки дорівнює нулю?

З класичної точки зору, системи такого типу (з прямокутною, або квадратною але виродженою матрицею) розв'язків не мають, але для них вводять поняття узагальненого розв'язку (псевдорозв'язок). Розглянемо дане поняття більш детально.

Читати повністю

Псевдообернена матриця. Обертання прямокутних та вироджених матриць

В попередніх параграфах для квадратної невиродженої матриці розглядалася обернена матриця . Якщо ж матриця  прямокутна або квадратна, але вироджена, то вона немає класичної оберненої матриці. Однак в цьому випадку може бути введено поняття узагальненої оберненої матриці , яка має деякі властивості оберненої та використовується при вирішенні деяких систем лінійних алгебраїчних рівнянь. У разі, коли  — квадратна невироджена матриця, узагальнена обернена матриця збігається з оберненою матрицею .

Узагальненою оберненою (псевдооберненою) матрицею для прямокутної матриці  з розмірами називають єдину матрицю, що задовольняє чотирьом умовам:

де означає перехід до сполученої матриці.

Читати повністю

Знаходження розв'язку однорідної системи лінійних алгебраїчних рівнянь

Розглянемо однорідну систему лінійних алгебраїчних рівнянь:

або у векторно-матричній формі , де

Якщо визначник матриці коефіцієнтів  даної системи відмінний від нуля, то в силу формул Крамера система (1) має нульовий розв'язок (), і причому єдиний.

Якщо ж , то в цьому випадку система (1) має безліч розв'язків, в тому числі і ненульові. З (2) випливає, що якщо  — являється розв'язком системи (2) то , де  — довільна стала, також є розв'язком цієї системи; якщо і  — розв'язок системи (2), то сума  і  — також є розв'язком цієї системи.

Читати повністю

Наступна сторінка »