Категорія: Методи наближення функцій

Інтерполяція функції тригонометричними поліномами

Нехай Інтерполяція тригонометричними поліномами періодична і задана на осі trigonometric_interpolation2 функція. Шляхом лінійної заміни незалежної змінної період функції можна зробити рівним trigonometric_interpolation3. У цьому випадку задану функцію доцільно інтерполювати тригонометричним поліномом:

trigonometric_interpolation5

таким що trigonometric_interpolation6, де trigonometric_interpolation7 точки з проміжку trigonometric_interpolation8. Поліном trigonometric_interpolation9 будемо називати тригонометричним поліномом порядку trigonometric_interpolation10.

Нехай trigonometric_interpolation11. Необхідно підібрати коефіцієнти полінома таким чином, щоб виконувались наступні рівності:

trigonometric_interpolation12

Тобто ми отримали систему рівнянь із trigonometric_interpolation13 невідомими trigonometric_interpolation14. Як відомо, визначник даної системи відмінний від нуля, тому дана інтерполяційна задача має роз’язок, причому єдиний.

Читати далі

Інтерполяційна схема Ейткена

Нехай функція і розташування вузлів на відрізку інтерполяції такі, що інтерполяціний процес має збіжність. І нехай потрібно знайти не загальний вираз , а лише його значення при конкретних , тобто вирішується задача обчислення окремих наближених значень функції  за допомогою обчислення відповідних їм значень інтерполяційного многочлена Лагранжа . Розглянемо даний процес більш детально і побудуємо обчислювальну схему для отримання наближеного значення таблично заданої функції  в заданій точці , в основу якої буде покладена інтерполяція Лагранжа на сітці вузлів . Організація обчислень за цією схемою матиме ітераційний характер, кожен крок якої полягає в обчисленні деякого визначника другого порядку.

Нехай дано дві точки на кривій : і . Побудуємо функцію :

Тобто  збігається з інтерполяційним многочленом Лагранжа першої степені, побудованим за двома даними точкам. Побудуємо через визначник функцію для точок  та :

Читати далі

Інтерполяційна формула Ньютона для нерівновіддалених значень аргументу

Якщо таблиця значень функції дана не з постійним кроком, тобто проміжки між суміжними значеннями аргументу різні в різних місцях таблиці, то різниці між суміжними значеннями функції не можуть служити для опису зміни даної функції. В такому випадку для цього використовують величини, яку називають розділеними різницями.

Нехай функція  задана таблично:

njyton_interpolnerivn2

Таблиця фіксованих значень функції

де . Розділеною різницею першого порядку двох табличних значень називається відношення різниці значень функції до різниці відповідних значень аргументу. Це визначення застосовне для будь-якої пари значень аргументу, але зазвичай використовується для суміжних значень. Позначення розділених різниць першого порядку будуються так, щоб були вказані взяті табличі значення аргументу. Так, для приведеної вище таблиці розділені різниці першого порядку позначаються та обчислюються наступним чином:

Читати далі

Інтерполяція функції двох змінних

Нехай функція задана на системі рівновіддалених точок interpol_func_2vars2, де , причому . Ввівши позначення відомі значення функції можна оформити у вигляді таблиці з двома входами:

Таблиця фіксованих значень функції двох змінних

Таблиця фіксованих значень функції двох змінних

Інтерполювання функції двох змінних , тобто знаходження її не табличних значень, здійснюється в два етепи, кожен з яких полягає  у інтерполяції функції від однієї змінної та відповідно.

Читати далі

Задача оберненого інтерполювання для випадку рівновіддалених вузлів

Нехай функція задана таблично. Задача оберненого інтерполювання полягає в тому, щоб по заданому значенню функції визначити відповідне значення аргумента . Розглянемо даний алгоритм більш детально, для випадок рівновіддалених вузлів, в якому зазвичай використовується метотод послідовних наближень.

Припустимо, що функція монотонна і її значення , для якого необхідно визначити значення аргументу міститься між та . Замінюючи функцію  першим інтерполяційним многочленом Ньютона, будемо мати:

звідси , де .

Далі, взявши за початкове наближення , для останнього рівняння застосуємо метод простої ітерації. В результаті отримаємо:

Читати далі

Інтерполяція функції використовуючи формулу Бесселя

Для виводу інтерполяційної формули Бесселя візьмемо Інтерполяційна формула Бесселя рівновіддалених вузли інтерполяції stirling_interpolation4 з кроком Інтерполяційна формула Бесселя, і нехай Інтерполяційна формула Бесселя задані значення функції в даних вузлах.

Після цього, скориставшись другою інтерполяційною формулою Гаусса, в якості початкового наближення для якої взявши значення Інтерполяційна формула Бесселя та Інтерполяційна формула Бесселя, отримаємо:

stirling_interpolation31

Далі, за початкове наближення візьмемо значення Інтерполяційна формула Бесселя. Тоді Інтерполяційна формула Бесселя, причому відповідно індекси всіх різниць в правій частині формули (1) виростуть на одиницю. Замінивши в правій частині (1) stirling_interpolation12 на stirling_interpolation13 і збільшивши індекси всіх скінченних різниць на 1, отримаємо допоміжну інтерполяційну формулу:

Читати далі

Інтерполяція в середині таблиці. Інтерполяційна формула Стірлінга

Інтерполяційні формули Гаусса являються не єдиними, які відносяться до категорії формул з центарльними різницями. До їх числа також відносять інтерполяційну формулу Стірлінга та Бесселя. В даному матеріалі розглянемо першу з них.

Інтерполяційна формула Стірлінга, представляє собою середнє арифметичне першої та другої інтерполяційних формул Гаусса і приймає наступний вигляі:

Інтерполяційна формула Стірлінга

де Інтерполяційна формула Стірлінга.

Читати далі

Перша та друга інтерполяційні формули Гаусса

Нехай маємо Інтерполяційна формула Гаусса рівновіддалених вузлів інтерполяції Інтерполяційна формула Гаусса, де Інтерполяційна формула Гаусса, і для деякої функції Інтерполяційна формула Гаусса відомо її значення в даних вузлах, тобто Інтерполяційна формула Гаусса. Задача полягає у побудові інтерполяційного полінома, степінь якого не перевищує Інтерполяційна формула Гаусса і значення якого у візлах інтерполяції співпадає з відомими значеннями функції (Інтерполяційна формула Гаусса).

Даний поліном будемо шукати в наступному вигляді:

Інтерполяційна формула Гаусса

Використовуючи узагальнену степінь числа, вираз (1) перепишемо у наступному вигляді:

Інтерполяційна формула Гаусса

Читати далі

Знаходження наближеного значення таблично заданої функції використовуючи кубічну сплайн-інтерполяцію

Використання однієї інтерполяційної формули для великого числа вузлів, як у випадку інтерполяційних формул Ньютона чи Лагранжа являється недоцільним. Такий інтерполяційний многочлен сильно проявляє свої коливальні властивості, і його значення між вузлами можуть сильно відрізнятися від значень інтерпольованої функції. Однією з можливостей обійти такий недолік є застосування сплайн-інтерполяції. Ідея сплайн-інтерполяції полягає в побудові поліномів між парами сусідніх вузлів інтерполяції, причому для кожної пари вузлів будується свій поліном. Найпоширеніший у практиці є кубічний сплайн, для побудови якого необхідно побудувати n многочленів третьої степені:

Сплайн-інтерполяція

Для визначення невідомих Сплайн-інтерполяція многочлена (1) необхідно 4n рівняннь. Частина з них, а саме 2n, може бути отримана з умови проходження сплайна через вузли інтерполяції Сплайн інтерполяція:

Сплайн-інтерполяція

де Сплайн-інтерполяція. Науступні (2n-2) рівняння знайдемо з умови неперервності перших і других похідних у вузлах інтерполяції, тобто з умови гладкості кривої в усіх точках. Для цього знайдемо першу і другу похідну тричлена (1):

Читати далі

Обчислення проміжних значень таблично заданих функцій використовуючи квадратичну інтерполяцію

Кусково-квадратична інтерполяція, на відміну від кусково-лінійної, зводиться до формування для кожного відрізка Квадратична інтерполяція квадратичного тричленаКвадратична інтерполяція, який передбачає з’єднання кожної трійки сусідніх точок відрізком квадратичної параболи.

Квадратична інтерполяція

Кусково-квадратична інтерполяція

Шукати невідомі коефіцієнтів Квадратична інтерполяція тричлена (1) будемо виходячи з умови збігу значень шуканої квадратичної функції з табличними значеннями в трьох заданих точках. Для цього складемо наступну систему рівнянь (визначник системи (2) відмінний від нуля в тому випадку, коли точки Квадратична інтерполяція не лежать на одній прямій):

Читати далі