Задача дробово-лінійного програмування. Математична модель задачі дробово-лінійного програмування

У деяких практичних завданнях критерій прийняття рішень описується відношенням двох економічних або технічних параметрів. У таких ситуаціях необхідно приймати рішення з метою максимізації або мінімізації відношення цих двох параметрів. Якщо кожен з них математично описується лінійною функцією, то в таких випадках необхідно знайти екстремум (максимум чи мінімум) відношення цих двох лінійних функцій. Відношення двох лінійних функцій називають дробово-лінійною цільовою функцією. Задача оптимізації дробово-лінійної функції при лінійних обмеженнях називається задачею дробово-лінійного програмування. Як правило, при максимізації відношення двох економічних показників, показник чисельника прагне досягти максимальне можливе значення, а показник знаменника — мінімальне. При мінімізації — навпаки.

Читати повністю

Побудова мінімального кістяка в неорієнтованому графі використовуючи алгоритм Борувки

Алгоритм Борувки, як і алгоритм Крускала та алгоритм Прима, призначений для відшукання дерева мінімальної вартості в неорієнтованому графі. Основна ідея даного алгоритму дещо подібна до першого, тобто пошук мінімального кістяка також починається з розгляду дерев, кожне з яких складається з однієї вершин. Після чого, з допомогою ітераційного процесу, відбувається обєднання найближчих дерев і продовжується даний процес до тих пір, поки всі об'єкти не належатимуть одному дереву. Відмітимо, що характерною особливістю алгоритму Буровки є те, що на кожній такій ітерації кількість дерев скорочується мінімум в два рази.

Ілюстрація роботи алгоритму Борувки

Ілюстрація роботи алгоритму Борувки

Далі більш детально зупинемося на розгляді ітераційного процесу, тобто розглянемо, яким чином в алгоритмі Борувки відбувається пошуку найближчих дерев. Отже, нехай на деякій ітерації, для заданого дерева, потрібно знайти найближче до нього. Для цього необхідно для кожної компоненти вихідного дерева (на малюнку зображені у вигляді кола з штрихпунтирною лінією) знайти найближчу компоненту з іншого дерева. Далі з усіх знайдених елементів вибрати мінімальний, який і стане ребром, що обєднює два дерева.

Читати повністю

Знаходження розв'язку задачі нелінійного програмування методом Франка-Вульфа

Розглянемо ще один метод призначений для знаходження розв'язку задачі нелінійного програмування, а саме метод Франка-Вульфа, який відноситься до категорії градієнтних методів і процедура якого передбачає визначення оптимального плану шляхом перебору розв'язків, які є допустимими планами задачі. Розглянемо даний процес більш детально і припустимо, що нам необхідно відшукати максимальне значення функції мети:

при наступних обмеженнях:

Тобто, як Ви вже встигли помітити, характерною особливістю розв'язуваних з допомогою даного методу задач є те, що їх система обмежень повинна містити тільки лінійні нерівності. Ця особливість є основою для заміни в зоні досліджуваної точки нелінійної цільової функції лінійною, завдяки чому рішення вихідної задачі зводиться до послідовного рішення задач лінійного програмування.

Читати повністю

Метод множників Лагранжа. Розв'язок задачі нелінійного програмування з обмеженнями-рівностями

Ідея методу множників Лагранжа при знаходженні розв'язку задачі нелінійного програмування, полягає в заміні початкової задачі дещо простішою. Для цього цільову функцію замінюють іншою, з більшою кількістю змінних і яка включає в себе умови, що подані як обмеження. Після такого перетворення подальше розв'язування задачі полягає в знаходженні екстремуму нової функції, на змінні якої не накладено ніяких обмежень. Тобто від початкової задачі пошуку умовного екстремуму переходимо до задачі відшукання безумовного екстремального значення іншої функції, яке визначається з допомогою необхідної умови існування екстремуму. Тобто, для розв'язування задачі необхідно знайти вирази частинних похідних нової цільової функції за кожною змінною і прирівняти їх до нуля. В результаті отримаємо систему рівнянь. Її розв'язок визначає так звані стаціонарні точки, серед яких є і шукані екстремальні значення функції.

Далі, розглянемо даний процес більш детально, та застосуємо метод множників Лагранжа для розв’язування задачі нелінійного програмування, що має вигляд:

Читати повністю

Графічний метод. Знаходження розв'язку задачі нелінійного програмування графічним методом

Перш ніж приступити до розгляду методу, нагадаємо, що задача нелінійного програмування може бути розв'язана графічно лише в тому випадку, коли число невідомих в задачі такого типу не перевищує два. Тобто коли необхідно знайти найбільше чи найменше значення цільової функції при наступних обмеженнях:

Після того, як формулювання задачі нелінійного програмування з двома невідомими та в загальному вигляді відоме, перейдемо до розгляду основних етапів її розв'язку з допомогою графічного методу:

Читати повністю

Задача нелінійного програмування. Математична модель задачі нелінійного програмування

Досить детально розглянута в розділах, присв'ячених лінійному програмуваню, задача пошуку оптимальних обсягів виробництва грунтується на припущеннях про лінійність зв'язку між витратами ресурсів і обсягами виготовленої продукції; між ціною, рекламою та попитом тощо. Якщо такі зв'язки є нелінійними, то більш адекватні математичні моделі доцільно формулювати в термінах нелінійного програмування.

Нехай для деякої виробничої системи необхідно визначити план випуску продукції, за умови найкращого способу використання ресурсів системи. Відомі загальні запаси кожного ресурсу, норми витрат кожного ресурсу на одиницю продукції та ціна реалізації одиниці виготовленої продукції. Критерії оптимальності можуть бути різноманітними, наприклад максимізація виручки від реалізації продукції. Така умова подається лінійною залежністю загальної виручки від обсягів проданого товару та ціни одиниці продукції.

Однак, загально відомим є факт, що за умов ринкової конкуренції питання реалізації продукції є досить складним. Обсяг збуту кінцевої продукції визначається перш за все її ціною, отже в якості цільової функції доцільно розглядати максимізацію не всієї виготовленої, а лише реалізованої продукції. Тоді необхідно визначити також і оптимальне значення ціни одиниці продукції, при якій обсяг збуту буде максимальним. Для цього, її потрібно ввести в задачу як невідому величину, при цьому обмеження задачі мають враховувати зв'язки між ціною, рекламою та обсягами збутої продукції. Цільова функція міститиме добуток двох невідомих величин (оптимальна ціна одиниці продукції та оптимальна кількість відповідного виду продукції), а отже є нелінійною. Таким чином приходимо до задачі нелінійного програмування.

Читати повністю

Знаходження початкового опорного плану транспортної задачі методом плаваючих зон

Метод плаваючих зон використовується для побудови початкового опорного плану транспортної задачі великої розмірності. Отриманий з його допомогою план, як і у випадку методу подвійної переваги, являється близьким до оптимального. Основна ідая даного методу полягає в тому, що при заповненні транспортної таблиці враховуються не тільки вартості перевезень, але й обсяги продукції які містяться в пунктах відправлення, та потреби в пунктах призначення. Опишемо даний процес більш детально.

Отже, незалежно від постановки задачі, вартість перевезення одиниці продукції з пункту в пункт розглядається, як відстань між цими пунктами. В такому випадку, всю територію, яка обслуговується пунктами відправлення, можна умовно розбити на зони, в які пункти призначення входять за принципом мінімальнї відстані до відповідних пунктів відправлення (де кількість зон — це кількість пунктів відправників). Тобто пункт  потрапляє в зону , якщо .

Читати повністю

« Попередня сторінкаНаступна сторінка »