Категорія: Чисельні методи розв’язування рівнянь з однією змінною

Межі дійсних коренів многочлена з дійсними коефіцієнтами

Наближене обчислення кореня, будь-якого алгебраїчного рівняння, як правило, розпадається на дві задачі: відокремлення коренів, тобто визначення інтервалів, в кожному з яких міститься тільки один корінь рівняння; уточнення коренів, тобто обчислення його з заданим степенем точності. Прте, перш ніж відокремлювати корені, природно визначити межі області, в якій розташовані всі корені рівняння.

Межі дійсних коренів многочлена

В даному параграфі розглянемо один із способів відшукання цих меж, для випадку, коли алгебраїчне рівняння являється многочленом -ї степені:

Покажемо, спочатку, що для рівняння такого виду, достатньо вміти знаходити лише верхню межу його додатних коренів. Отже, нехай  – верхня межа додатних коренів рівняння (1). Тоді, якщо числа  будуть верхіми межами додатних коренів многочленів відповідно, то буде нижньою межею додатних коренів многочлена (1), а числа і служать нижньою і верхньою межами від’ємних коренів многочлена  відповідно. Таким чином, всі додатні корені  задовольняють нерівність , а від’ємні – нерівність .

Читати далі

Знаходження всіх дійсних коренів алгебраїчного рівняння шляхом видалення вже знайдених коренів

Один із недоліків методу половинного ділення чи будь-якого з ітераційних методів розв’язку нелінійних алгебраїчних рівнянь є той факт, що процес збігається невідомо до якого кореня. Сьогодні розглянемо один із способів уникнути даної проблеми, який полягає у видалені вже знайденого кореня.

Отже, нехай задано рівняння , для якого на заданому відрізку необхідно знайти всі дійсні корені (відмітимо що функція на даному відрізку є неперервною). Далі припустимо, що є простий корінь рівняння (1), тоді допоміжна функція буде також неперервною на даному інтвалі, причому всі нулі функцій  та співпадають за винятком , тобто . Якщо  кратний корінь рівняння (1), то він буде нулем і для  кратності на одиницю менше. Решта нулів обох функцій як і раніше будуть однакові. Тому знайдений корінь можна видалити, тобто перейти до функції . Тоді знаходження інших нулів  зведеться до знаходження нулів .

Далі, припустимо, що на другому кроці ми знайшли деякий корінь функції . Цей корінь теж мжна видалити, ввівши нову допоміжну функцію . Відзначимо, що таким чином можна послідовно знайти всі корені заданого рівняння (1).

Читати далі

Використання інтерполяційних методів для ровз’язку нелінійних рівнянь

Ідея інтерполяційних методів полягає в тому, що задача знаходження коренів рівняння на проміжку , замінюється задачею знаходження коренів інтерполяційного полінома , побудованого для функції .

Розглянемо випадок, коли для  будується інтерполяційний поліном першого порядку інтерполяційний метод першого порядку. Припустимо, що нам відомі наближення і до кореня рівняння (1) (відмітимо, що в якості нульового і першого наближень зазвичай беруться наступні знаення або , де – достатньо мале число). Вибравши їх в якості вузлів інтерполяції, побудуємо для функції  інтерполяційний поліном у формі Ньютона для нерівновіддалених значень аргументу:

де – розділена різниця першого порядку. Замінюючи в рівнянні (1) функцію  інтерполяційним поліномом (2), одержимо лінійне рівняння . Приймаючи його розв’язок за нове наближення, приходимо до інтерполяційного методу першого порядку:

Відмітимо, що процес знаходження розв’язку рівняння (1) згідно інтерполяційного методу першого порядку, як і будь-якого іншого методу рішення задач такого типу, необхідно продовжувати до тих пір, поки модуль різниці між двома сусідніми значеннями наближень не стане меншим за деяке число , тобто .

Читати далі

Розв’язок алгебраїчних рівнянь методом послідовних наближень з використанням схеми Горнера

Для знаходження розв’язку алгебраїчних рівнянь степінь яких перевищує два можна також застосувати метод послідовних наближень з використанням схеми Горнера для ділення лівої частини рівняння на , де – дійсний корінь рівняння. У методі послідовних наближень, що застосовуються при вирішенні рівнянь такого типу, відшукується послідовність чисел , яка збігається до числа , яке є коренем рівняння. Ми будемо вважати хорошим наближенням до кореня , якщо залишок від ділення лівої частини рівняння на досить малий. Розглянемо даний процес більш детально. Для цього в рівнянні

відбираємо три останніх члена і знаходимо розв’язок отриманого квадратного рівняння . Якщо корені цього рівняння дійсні, то перерходимо до рішення рівняння , після чого, за перше наближення кореня рівняння (1) приймаємо розв’язок даного рівняння, тобто:

Читати далі

Розв’язок алгебраїчних рівнянь методом Лобачевського з використанням процесу квадрування

Нехай дано рівняння:

Метод Лобачевського

про корені якого відомо, що вони різними по абсолютній величині, тобто такзвана умова “набагато більше” (Метод Лобачевського) для них не виконується. Для таких випадків Лобачевським було запропоновано алгоритм, який базується на процесі квадрування. Тобто, якщо до рівняння (1), достатню кількість раз застосувати даний процес, то можна отримати нове рівняння, корені якого задовільняють умовіМетод Лобачевського. Таким чином ми зможемо знайти корені останнього рівняння, після чого і корені рівняння (1). Отже, давайте розглянемо в чому полягає алгоритм процесу квадрування. Для цього розкладемо рівняння (1) на на Метод Лобачевського лінійних множників:

Метод Лобачевського

Далі, запишемо рівняння, корені якого будуть протилежні за знаком до коренів рівняння (1). Таке рівняння буде мати наступний вигляд:

Читати далі

Метод Лобачевського знаходження коренів алгебраїчних рівнянь з дійсними різними по абсолютній величині коренями

Основною перевагою методу Лобачевського є те, що він не вимагає інформацію про початкові наближення шуканих коренів. Він добре працює, якщо рівняння має тільки дійсні корені і не має коренів, які рівні або близькі по абсолютним величинам. Метод не є універсальним, оскільки є рівняння, для знаходження коренів яких він не застосовується і тому метод Лобачевського в основному застосовується для ручного підрахунку та знаходженні коренів з невеликою точністю.

Нехай дано рівняння виду Метод Лобачевського, про корені якого відомо, що всі вони дійсні і задовольняють умові Метод Лобачевського (де знак Метод Лобачевського означає набагато більше). Далі, скориставшись теоремою Вієта, запишемо флрмули, які описують зв’язок між коренями і коефіцієнтами рівняння (1):

Читати далі

Використання комбінованого методу хорд та дотичних для знаходження розв’язку нелінійного рівняння

Метод хорд та дотичних дають близьке до кореня значення з різних боків. Тому, з метою пришвидшити процес відшукання кореня їх часто використовують у поєднанні.

Нехай маємо рівняння Комбінований метод хорд та дотичних корінь якого знаходиться на відрізку kombinovanuj_metod2. При знаходженні розв’язку даного рівняння за комбінованим методом можливі два випадки:

1. Якщо kombinovanuj_metod3, то з лівого кінця відрізку kombinovanuj_metod2 шукають корінь за методом хорд, а з правого кінця – за методом дотичних. В результаті отримуємо наступні розрахункові формули.

kombinovanuj_metod4

kombinovanuj_metod9

Графічна інтерпритація першого випадку комбінованого методу

Читати далі

Знаходження розв’язку нелінійного рівняння методом половинного ділення

Нехай задано рівняння metod_polovunnoho_dilenja1, яке на відрізку [a; b] має єдиний розв’язок, при чому, функція Метод половинного ділення на даному відрізку є неперервною.

Метод половинного ділення

Метод половинного ділення

Для знаходження шуканого розв’язку розділимо відрізок [a; b] навпіл точкою Метод половинного ділення. Якщо значення функції в даній точці відмінне від нуля (Метод половинного ділення), то можливі два випадки:

  1. Функція Метод половинного ділення змінює знак на відрізку [a; c].
  2. Функція Метод половинного ділення змінює знак на відрізку [c; b].

Вибираючи той відрізок, на якому функція змінює знак і продовжуючи процес половинного ділення дальше, отримаємо як завгодно малий відрізок, який буде містити корінь рівняння metod_polovunnoho_dilenja1.

Читати далі

Метод простої ітерації для розв’язання одного нелінійного рівняння

Метод простої ітерації (також відомий як метод послідовних наближень) є одним з найбільш важливих способів чисельного розв’язання рівняня. Основна ідея даного методу полягає в тому, що ми замінюємо рівняння Метод ітераціїрівносильним йому рівнянням виду:

Метод ітерації

При цьому вважаємо, що Метод ітерації є неперервною на проміжку Метод ітерації.

Оберемо, довільним чином, наближене значення кореня Метод ітерації і підставимо його в праву частину рівняння (1) . Тоді отримаємо число:

Метод ітерації

Підставивши, тепер в праву частину рівняння (2) замість Метод ітераціїчисло metod_iteracii_nelin_rivn7, отримаємо нове число Метод ітерації і так далі продовжуємо даний процес. В результаті отримаємо послідовність чисел:

Метод ітерації

Якщо отримана послідовність збіжна, тобто існує Метод ітерації, то переходячи до границі в рівнянні (3) отримаємо:

Метод ітерації або Метод ітерації,

тобто границя Метод ітераціїє коренем рівняння (1) з довільним степенем точності.

Читати далі

Знаходження наближеного розв’язку нелінійного алгебраїчного рівняння методом дотичних

Багато проблем в математиці, науці, техніці та бізнесі, в кінцевому підсумку, зводяться до відшукання коренів рівняння. Сумним є той факт, що більшість з цих математичних рівнянь не можуть бути вирішені аналітично. Ви вже знаєте про формулу для розв’язку квадратичних поліноміальних рівнянь. Однак ви можете не знати, що існують формули для рішення рівнянь третьої та четвертої степені. На жаль, ці формули настільки громіздкі, що майже ніколи не використовуються. Для рівнянь більш високої степені таких формул взагалі не існує. Крім того, якщо рівняння містять тригонометричні функції, то, в такому випадку, ще простіше знайти рівняння, які не мають аналітичних рішень. Наприклад, наступне просте рівняння не може бути розв’язане, щоб дати формулу для .

Необхідність розв’язку нелінійних рівнянь, які не можуть бути вирішені аналітично, привела до розвитку чисельних методів. Один з найбільш часто використовуваних чисельних методів називається методом Ньютона або методом Ньютона-Рафсона. Ідея даного методу відносно проста. Припустимо, що розглядається нелінійне рівняння виду Метод дотичних, де Метод дотичних – функція неперевна на відрізку Метод дотичних і має на даному відрізку, відмінні від нуля, похідні першого і другого порядків. Тоді, ідея методу Ньютона полягає в тому, що на кожній ітерації графік функції Метод дотичних замінюється дотичною (звідки інша назва цього методу – метод дотичних) і точку перетину кожної з цих дотичних з віссю абсцис приймають за чергове наближення до шуканого кореня.

Читати далі