Категорія: Чисельні методи розв’язання задач математичної фізики

Розв’язування рівнянь теплопровідності за методом Кранка-Ніколсона

Неявна схема була відкрита Джоном Кранком (John Crank) і Філлісом Ніколсоном (Phillis Nicholson), заснована на чисельних наближеннях для розв’язку рівнянь виду:

Метод Кранка-Ніколсона

в точці Метод Кранка-Ніколсона, яка знаходиться між рядами сітки. Більш визначене наближення, яке використовується для Метод Кранка-Ніколсона отримаємо по формулі симетричних різниць:

Метод Кранка-Ніколсона

Наближення, яке використовуємо для Метод Кранка-Ніколсона є середнім наближенням Метод Кранка-Ніколсона і Метод Кранка-Ніколсона порядок точності якого становить Метод Кранка-Ніколсона:

Метод Кранка-Ніколсона

Читати далі

Розв’язування рівнянь теплопровідності методом скінченних різниць

Розглянемо одномірне рівняння теплопровідності (відноситься до диференціальних рівнянь параболічного типу), яке має наступний вигляд Метод скінченних різниць де:

Метод скінченних різниць

з початковими умовами:

Метод скінченних різниць

і граничними умовами:

Метод скінченних різниць

Рівняння теплопровідності – це модель температури в ізольованому бруску, який має на кінцях постійну температуру Метод скінченних різниць і Метод скінченних різниць та початкову температуру по цілому бруску Метод скінченних різниць. Для даної задачі потрібно знайти чисельний розв’язок з допомогою методу скінченних різниць.

Читати далі