Проекція вектора на вісь

Нехай задано вектор і вісь L. З кінців вектора опустимо перпендикуляри на вісь (точки та ) і утворимо вектор A1B1.

Проекцією вектора на вісь L називають довжину вектора A1B1, взяту зі знаком «плюс», якщо напрямки вектора A1B1та осі L співпадають, і зі знаком «мінус», якщо вказані напрямки протилежні.

Проекція вектора на вісь

Ілюстрація до визначення проекції вектора на вісь

Проекцію вектора будемо позначати через  або , де - будь-який ненульовий вектор, що задає напрямок проектування.

Далее

Множення вектора на число

Добутком вектора на число називається вектор , колінеарний вектору , який має довжину і спрямований у той самий бік, що й вектор , якщо , і в протилежний, якщо (для позначення використовують запис ).

Множення вектора на число

Зауваження: якщо вектор  заданий своїми координатами та , то добуток цього вектора на число  — це вектор , координати якого дорівнюють відповідним координатам даного вектора , помноженим на число : .

Далее

Додавання і віднімання векторів

Нехай  і  — два довільних вектори. За допомогою паралельного перенесення приведемо вектор до довільної точки , а потім від кінця цього вектора відкладемо вектор . Сумою цих векторів буде вектор , початок якого збігається з початком вектора  , а кінець — із кінцем  (правило трикутників).

Сума векторів, правило трикутника

Додавання векторів — правило трикутника

Для знаходження суми векторів можна також користуватись правилом паралелограма, згідно з яким вектори  та  приводять до спільного початку (точки ) і будують на цих векторах, як на суміжних сторонах, паралелограм. Тоді його діагональ, що виходить зі спільної вершини , є сумою векторів .

Далее

Алгоритм Шімбелла (реалізація в середовищі Delphi)

Delphi-програма призначена для знаходження найкоротших шляхів від початкової вершини (вершина №1) до всіх інших вершин орієнтованого графа (та підрахунку довжин даних шляхів), використовуючи для цього матричний метод Шімбелла.

Головна форма розглядуваного проекту складається з панелі інструментів (містить кнопки «Додати вершину», «Видалити вершину», «Додати ребро», «Видалити ребро», «Видалити граф» і «Знайти шляхи мінімальної довжини»), області графічного представлення, області представлення графа у вигляді матриці суміжності (лщмпонент типу TStringGrid) та області виводу результатів (компонент типу TMemo, призначений для виводу розв'язку у вигляді списку ребер).

Для того, щоб намалювати орієнтований граф, на першому кроці, потрібно активізувати кнопку панелі задач під назвою «Додати вершину». Після цього, за допомогою лівої кнопки мишки, розставити їх в області форми «Граф».

schimbels_method_delphi1

Створення вершин орієнтованого графа

Зауваження: в delphi-програмі передбачена можливість переміщення вершин побудованого графа. Для цього достатньо натиснути лівою кнопкою мишки по необхідній вершині та перетягнути її в потрібне місце (переміщення можливе лише в тому випадку, коли програма знаходиться в режимі розміщення вершин).

Далее

Означення вектора. Напрям і модуль вектора

У повсякденній практиці ми маємо справу з величинами двох видів. Одні з цих величин такі, як температура, час, маса, довжина, площа можна визначити одним числовим значенням, інші ж величини, такі, як сила, швидкість, прискорення можна визначити тільки тоді, коли відомо не тільки їх числове значення, а й напрям у просторі. Величини першого виду називають скалярними величинами або скалярами. Величини другого виду називають векторними величинами.

Кожну векторну величину геометрично можна зобразити напрямленим прямолінійним відрізком — вектором, довжина якого дорівнює числовому значенню векторної величини (у вибраному масштабі) і напрям співпадає з напрямом цієї величини.

Нульовий вектор, колінеарні вектори, рівні вектори

Ілюстрація до визначення вектора

Вектор визначають двома точками: перша — це початок, друга — його кінець. При цьому, додатним напрямом вектора вважається напрямок від його початкової до кінцевої точки, наприклад, вектор має початок у точці і кінець у точці (стрілка вказує напрям вектора).

Далее

Знаходження найкоротших шляхів в графі методом Шімбелла

Завдяки своєму широкому застосуванню, теорія про знаходження найкоротших шляхів в графі останнім часом інстенсівно розвивається і використовується в різних сферах діяльності, наприклад, для знаходження оптимального матршрута між двома об'єктами на місцевості (найкоротший шлях від будинку до університету), для знаходження оптимального матршрута при перевезеннях, в системах автопілота, в системах комутації інформаційних пакетів в мережі Internet тощо. Найбільш поширені методи визначення зазначених шляхів діляться на дві категорії. Це  індексні та матричні методи.

В основу індексних методів покладено принцип індексації, тобто принцип присвоєння вершинам графа деяких індексів, значення яких змінюються в процесі вирішення. Ці величини в результаті реалізації алгоритму визначають довжину шляху від вихідної до заданої вершини. До індексних методів належать методи Дейкстри, метод Беллмана-Форда, метод Мура та інші.

Всі ж матричні методи пов'язані з побудовою матриці суміжності, елементами якої є довжини відповідних ребер графа. Найкоротші шляхи, в даному випадку, знаходяться послідовним перетворенням цієї матриці. До цих методів належить розглядуваний нижче метод Шімбелла та метод Оттермана.

Далее

Площа круга та кругового сектора

Нагадаємо, що кругом називається частина площини, обмежена колом. Тобто круг радіуса з центром містить точку  і всі точки площини, що знаходяться від даної точки на відстані, що не більша за .

Знаходження площі круга з допомогою багатокутників

Виведемо формулу, яка дозволить знайти площу круга радіус якого дорівнює . Для цього розглянемо правильний -кутник , вписаний в коло, що обмежує круг. Очевидно, площа даного кола більша площі багатокутника , так як він цілком міститься в даному колі. З іншого боку, площа кола, вписаного в багатокутник, менша , так як це коло цілком міститься в даному багатокутнику. Отже:

Будемо тепер необмежено збільшувати число сторін -кутника. Зазначимо, що в такому випадку збільшуватиметься і радіус  вписаного в багатокутник кола і при , величина буде як завгодно мало відрізнятися від , а отже, наближатиметься до одиниці, тому . Іншими словами, при необмеженому збільшенні числа сторін багатокутника, вписане в нього коло збігатиметься до описаного кола, тому при . Звідси і з нерівності (1) випливає, що при .

Далее

Наступна сторінка »