Пошук компонент зв'язності графа використовуючи алгоритм обходу в глибину

В даному параграфі розглядається delphi-проект, призначений для розв'язку задач на відшукання всіх компонент зв'язності неорієнтованого графа. Опишемо суть даної задачі більш детально. Отже, припустимо, що розглядається деякий неорієнтований граф з вершинами і ребрами. Потрібно розбити його вершини на групи, і зроти це таким чином, щоб в рамках однієї групи можна було б дійти від однієї вершини до будь-якої іншої, а між різними групами — шляху не існувало б. При цьому, повинні бути конкретно перераховані вершини, що входять в кожну таку групу.

Відмітимо, що для розв'язку задач такого типу, зазвичай, використовують один з двох алгоритмів. Це обхід графа в глибину або обхід графа в ширину. Розглядуваний delphi-проект реалізує перший з них.

Отже, головна форма проекту ділиться на три частини і складається з панелі інструментів, графічного редактора та області виводу результатів. Розглянемо призначення кожної з них більш детально.

Читати повністю

Перевірка неорієнтованого графа на зв'язність та ациклічність

Після того, як з основними моментами алгоритмів обходу неорієнтованого графа в глибину та обходу в ширину розібралися, перейдемо до розгляду стандартних завдань, що вирішуються за їх допомогою. Відмітимо, що важливим застосуванням цих двох алгоритмів є перевірка графа на зв'язність та ациклічність. Оскільки дані алгоритми завершуються після того, як всі вершини заданого графа пройдені і поєднані деяким шляхом зі стартовою, то здійснити перевірку графа на зв'язність можна наступним чином. Почнемо пошук в глибину (ширину) з довільної вершини і після завершення перевіримо, чи всі вершини графа пройдені. Якщо всі, то граф зв'язний, в іншому випадку — ні. Взагалі кажучи, такий підхід можна використовувати і для визначення компонент зв'язності графа. Покажемо, яким чином це реалізується.

Читати повністю

Побудова дерева обходу в ширину в середовищі програмування delphi

Перш ніж приступити до розгляду чергового delphi-проекту, що реалізує алгоритм обходу неорієнтованого графа, а якщо бути більш точним, то алгоритму обходу неорієнтованого графа в ширину, нагадаємо собі основну стратегію його роботи. Отже, для деякої вершини графа, зазначеної як стартова, проглядаються всі не відвідані її нащадки. На наступному кроці, не відвідані нащадки нащадків і так далі. Тобто, алгоритм пошуку в ширину перераховує всі досяжні вершини з початкової в порядку зростання їх віддаленості від неї і закінчує свою роботу, коли всі досяжні вершини пройдені.

Після того, як з теорією розібралися, перейдемо до розгляду delphi-проекту. Отже, після запуску програми, на екрані появиться форма наступного вигляду.

Пошук в ширину на delphi

Головне вікно проекту "Побудова дерева обходу в ширину для неорієнтованого графа"

Тобто, як і у випадку з програмною реалізаціїю алгоритму обходу графа в глибину, головна форма проекту ділиться на дві частини і складається з панелі інструментів та графічного редактора. Розглянемо призначення кожного з цих елементів більш детально.

Читати повністю