Побудова графіка функції в середовищі програмування Delphi

Розглянемо delphi-проект "Побудова графіка функції на Delphi", який малює на канві компонента Image графік функції заданої користувачем на заданому відрізку. Масштабування графіка по осі Х здійснюється по заданому відрізку, а по осі Y — по максимальному і мінімальному значенню функції. Для того, щоб задати функцію та діапазон зміни аргумента необхідно у відповідні поля форми вказати формулу, що описує функцію, та проміжок [a; b].

Після того, як всі необхідні параметри задано, переходимо безпосередньо до побудови графіка. Для цього достатньо натиснути кнопку «Побудувати графік функції». В рузультаті в правій частині форми відбудеться автоматична побудова графіка з заздалегідь заданими опціями («Показувати осі координат», «Показувати сітку та числові написи»).

Отже, давайте запустимо даний проект, і з його допомогою спробуємо побудувати графік функції F(x)=3*x-Sin(2*x) на проміжку [-3; 3].

Читати повністю

Знаходження розв'язку задачі Коші засобами Delphi використовуючи метод Мілна

Розглянемо delphi-проект, який використовуючи метод Мілна четвертого порядку точності (відноситься до групи методів прогнозу і коррекції) знаходить чисельний розв'язок задачі Коші. Перш ніж приступити до розгляду головної форми delphi-програми, нагадаємо, що основна ідея методів прогнозу і коррекції полягає в тому, що  рішення в наступній точці знаходиться у два етапи. На першому етапі знаходимо прогнозоване значення функції. На другому — корекція значення отриманого на попередньому етапі. Більш детальну інформацію про метод Мілна можна знайти за посиланням Знаходження розв'язку задачі Коші використовуючи метод Мілна.

Отже, після запуску програми, яка реалізує Метод Мілна, на екрані появиться форма наступного виду:

Головна форма delphi-проекту, який використовуючи метод мылна знаходить розвєязок задачі Коші

Головна форма delphi-проекту, який використовуючи метод Мілна знаходить розв'язок задачі Коші

Читати повністю

Знаходження розв'язку задачі Коші використовуючи метод Мілна

Одним з найбільш простих і практично зручних методів чисельного рішення диференціальних рівнянь є метод Мілна. Метод Мілна відноситься до багатокрокових методів і представляє один з методів прогнозу і корекції, тобто, рішення в наступній точці знаходиться у два етапи. На першому етапі здійснюється за спеціальною формулою прогноз значення функції, а потім на другому етапі — корекція отриманого значення. Якщо отримане значення Метод Мілна після корекції істотно відрізняється від спрогнозованого, то проводять ще один етап корекції. Якщо знову має місце суттєва відмінність від попереднього значення (тобто від попередньої корекції), то проводять ще одну корекцію і так далі. Однак, при використанні методу Мілна, дуже часто обмежуються лише одним етапом корекції.

Нехай потрібно знайти розв'язок задічі Коші:

Метод Мілна

Для цього, виберемо деякий крок Метод Мілна, і покладемо:

Метод Мілна

Далі, виходячи з того, що для знаходження значення Метод Мілна метод Мілна використовує інформацію з чотирьох попередніх точок Метод Мілна, знаходимо їх використовуючи початкову умову та будь-який з однокрокових методів (метод Ейлера, методо Рунге-Кутта).

Читати повністю

Знаходження розв'язку системи лінійних рівнянь використовуючи метод Гаусса з вибором головного елемента в середовищі програмування Delphi

Знаходження розв'язку систем лінійних алгебраїчних рівнянь являється однією з основних задач лінійної алгебри, а метод Гаусса (також називають методом послідовного виключення невідомих) — одним з найпоширеніших методів для рішення систем такого виду. Даний метод відомий в різних модифікаціях, серед яких виділяють метод Гаусса з вибором головного елемента.

Метод головних елементів також заснований на приведенні матриці системи до трикутного вигляду. Проте, на відміну від класичного методу Гаусса, в методі головних елементів алгоритм приведення матриці до такого вигляду дещо відрізняється. На прершому кроці, серед елементів матриці системи вибираємо максимальний за модулем елемент, який не належить стовпчику вільних членів. Нехай це буде елемент, який знаходиться в i-му рядку та j-й колонці (головний елемент). Далі, виключаємо з усіх рівнянь системи крім рівняння під номером i, невідому Xj. В результаті отримуємо матрицю, j-й стовпець якої складається з нульових елементів. Викрисливши з розгляду рядок і колонку в яких міститься головний елемен переходимо до нової матриці, яка складається з меншої на одиницю кількості рядків і колонок.

Читати повністю

Метод Гаусса з вибором головного елемента

Нехай дана система лінійних рівнянь виду (1), для якої потрібно знайти чисельний розв'язок:

Метод Гаусса з вибором ведучого елемента

Розглянемо розширену прямокутну матрицю, що складається з коєфіціентов системи (1) та її вільних членів:

Метод Гаусса з вибором головного елемента

Для даної матриці, згідно алгоритму методу Гаусса з вибором головного елемента, виберемо ненульовий, як правило, найбільший за модулем елемент, який не належить стовпцю вільних членів, тобто Метод Гаусса з вибором головного елемента. Нехай це буде елемент Метод Гаусса з вибором головного елемента (даний елемент також називають головним елементом). Далі, для кожного рядка матриці (2), крім рядка під номером Метод Гаусса з вибором головного елемента, обчислюємо множники:

Читати повністю

Матриця повороту. Обертання точки (об'єкта) на площині

Двовимірним поворотом об'єкта називається його переміщення по круговій траєкторії на прлощині. Параметрами даного переміщення є кут повороту Поворот точки на площині і деяка точка Поворот точки на площині — центр обертання, тобто точка навколо якої здійснюється поворот даного об'єкта.

Поворот об'єкта на заданий кут навколо цннтру обертання

Поворот об'єкта на заданий кут навколо цннтру обертання

Для простоти, розглянемо спочатку операцію обертання точки на деякий кут, коли центр обертання міститься в початку системи координат.

Читати повністю

Мінімізація функції багатьох змінних використовуючи метод Ньютона (метод Ньютона на Delphi)

Програма призначена для знаходження точки мінімуму функцій декількох змінних, тобто для мінімізації цих функцій. У програмі реалізовано один з методів, який відноситься до методів другого порядку — метод Ньютона. Даний метод при пошуку мінімуму використовує інформацію про функцію та її похідні до другого порядку включно. Детально розглядати теоретичну частину методу Ньютона в даному параграфі не будемо, її можна знайти за посиланням мінімізація функції багатьох змінних використовуючи методом Ньютона. Розглянемо лише delphi-проект, який реалізує алгоритм даного методу.

Програма на вході приймає функцію, для якої необхідно знайти мінімальне значення, список змінних, від яких залежить функція та початкове наближення. Тобто, якщо нам необхідно мінімізувати функцію Мінімізація функції методом Ньютона на Delphi, нам необхідно у відповідні поля головної форми проекту ввести наступні дані:

  1. У поле «Функція» — X*X+Y*Y-16.
  2. У поле «Список змінних» — X;Y.
  3. У поле «Початкове значення» — 0;0.

Після того, як всі поля заповнено, головна форма набуде наступного вигляду:

Читати повністю

Наступна сторінка »