Пошук Гамільтоновго циклу в неорієнтованому графі

Гамільтоновим циклом (Гамільтоновим ланцюгом) неорієнтованого графа називають простий цикл, що містить всі його вершини в точності по одному разу. Зовні визначення Гамільтонового циклу схоже на визначення Ейлерового циклу. Однак є кардинальна відмінність в складності розв'язку відповідних задач на розпізнавання і побудову. Тобто, якщо при розгляді Ейлерового циклу ми бачили, що для нього існує досить простий критерій перевірки його існування і ефективний алгоритм його побудови. То для Гамільтонових же циклів невідомо ніяких необхідних і достатніх умов їх існування, а всі відомі алгоритми вимагають, для деяких графів, перебору великого числа варіантів.

Читати повністю

Пошук Ейлерового циклу використовуючи алгоритм Флері в середовищі програмування delphi

Програму розроблено в середовищі програмування Delphi, основним призначенням якої є побудова Ейлерового циклу в Ейлеровому графі. В якості методу, використовується алгоритм Флері.

Граф задається у вигляді вершин (пронумеровані точки) та ребер (прямі лінії що їх з'єднюють). Для цього в програмі передбачено графічний редактор (компонент типу TImage) та дві кнопки типу TSpeedButton («Додати вершину» і «Додати ребро»). Підготовка проекту до нового прикладу здійснюється з допомогою кнопки «Видалити граф» (компонент типу TButton). При натисканні на кнопку «Побудувати Ейлерів цикл» (також компонент типу TButton) власне і запускається алгоритм Флері пошуку Ейлерового циклу.

Вихідні дані програми — послідовність вершин Ейлерового циклу та його представлення у графічному редакторі.

Читати повністю

Побудова Ейлерового циклу в неорієнтованому графі використовуючи алгоритм Флері

Перш ніж приступити до розгляду чергового алгоритму рішення задачі пошуку Ейлерового циклу нагадаємо собі означення та необхідну умову його існування в неорієнтованому графі. Отже, Ейлеровим циклом називається замкнутий маршрут, в якому кожне ребро графа зустрічається точно один раз. Згідно з твердженням, яке ми розглядали в минулому параграфі, для існування такого маршруту в зв'язному графові необхідно і достатньо, щоб степені всіх його вершин були парними. Відмітимо, що в даному параграфі нами вже було вивчено один з можливих вірівнтів знаходження Ейлерового циклу, який базується на використанні алгоритму обходу графа в глибину. Сьогодні розглянемо дещо простішу та наочнішу процедуру відому під назвою алгоритм Флері.

Читати повністю

Пошук мостів в неорієнтованому графі засобами delphi

В даному параграфі розглядається програмна реалізація описаного за посиланням Пошук мостів та компонент реберної двозв'язності графа алгоритму в середовищі Delphi 7. Основним призначенням delphi-проекту є пошук мостів в неорієнтованому графі. Граф задається з допомогою графічного редактора (компонент типу TImage) і кнопок «Додати вершину» та «Додати ребро» (компоненти типу TSpeedButton, які містяться на панелі інструментів типу TPanel). Знаходження ребер, які для заданого графа являються мостами та вивід їх в області виводу результатів (компонент типу TMemo) здійснюється з допомогою кнопки «Знайти мости в неорієнтованому графі» (компонент типу TButton). Підготовка проекту до нового прикладу здійснюється з допомогою кнопки «Видалити граф» (компонент типу TButton).

Читати повністю

Пошук мостів та компонент реберної двозв'язності в неорієнтованому графі

Мостом неорієнтованого графа називається ребро, при видаленні якого збільшується кількість компонент зв'язності графа. Відповідно, для зв'язного графа мостом називається ребро, при видаленні якого граф перестає бути зв'язним. При видаленні всіх мостів граф розпадається на компоненти зв'язності, які називаються компонентами реберної двозв'язності.

Між будь-якими двома вершинами однієї компоненти реберної двозв'язності існує, принаймні, два шляхи, що не перетинаються по ребрах. Справедливе і зворотне твердження: будь-які дві вершіні, між якими існують два шляхи, що не перетинаються по ребрах, належать одній компоненті реберної двозв'язності.

Між двома компонентами реберної двозв'язності не може бути більше одного ребра — в іншому випадку, вони утворюватимуть одну компоненту реберної двозв'язності. Якщо дві різні компоненти реберної двозв'язності з'єднані ребром, то це ребро — міст.

Читати повністю

Пошук Ейлерового циклу в середовищі програмування delphi

Delphi-прект реалізує черговий алгоритм з курсу теорія графів і призначений для пошуку Ейлерового циклу в неорієнтованому графі. Інтерфейс головної форми аналогічний до розглянутих в попередніх параграфах delphi-проектів (обхід графа в глибину, обхід графа в ширину, перевірка графа на наявність циклів). Тобто, задання графа здійснюється з допомогою графічного редактора і кнопок «Додати вершину» та «Додати ребро» (містяться на панелі інструментів). Підготовка проекту до нового прикладу здійснюється з допомогою кнопки «Видалити граф». А вивід списку вершин, послідовний обхід яких, для заданого графа, утворює Ейлерів цикл та його графічне представлення — з допомогою кнопки «Побудувати Ейлерів цикл». Провіримо його роботу на конкретному прикладі. Для цього, розглянемо неорієнтований граф наступного вигляду.

Читати повністю

Пошук Ейлерового циклу в неорієнтованому графі

Ейлеровим циклом (також відомий як Ейлерів ланцюг) називається замкнутий маршрут, в якому кожне ребро графа зустрічається точно один раз. Для існування такого маршруту в зв'язному неорієнтованому графі необхідно і достатньо, щоб степінь для всіх його вершин була парною. Сьогодні, розглянемо алгоритм, основна ідея якого збігається з алгоритмом обходу графа в глибину, та з його допомогою, для деякого неорієнтований граф , знайдемо Ейлерів цикл. Для цього, припустимо, що вимога зв'язності і парності степенів для нього виконується. Відмітимо, що в такому випадку граф є, принаймі, двозв'язним а отже, містить цикл.

poshuk_ejlerovogo_shljahu_v_grafi18

Графічне представлення алгоритму пошуку Ейлерового циклу

Отже, для побудови Ейлерового циклу довільно виберемо одну з вершин графа , наприклад вершину . На наступному кроці, виберемо будь-яке з інцидентних даній вершині ребер, наприклад , і з його допомогою перейдемо у відповідну суміжну вершину. Ребро  після виконання цих дій, вважатиметься пройденим. Після цього, повторюємо цю операцію, щоразу обираючи нове ребро, поки не опинимося в вихідній вершині  і не замкнемо цикл.

Читати повністю

Наступна сторінка »